Расчет зон поражения избыточным давлением взрыва. Определение вероятных параметров ударной волны при взрыве газа воздушной или паровоздушной смеси. Описание аварии и


Общая характеристика задач оценки

Для принятия решений по защите от воздействия воздушной ударной волны (ВУВ) взрыва на здания, сооружения, технику или на людей, а также для выработки мер взрывобезопасности необходимы данные, характеризующие взрывы, которые могут происходить во время военных действий, в производственной сфере и в быту. Наиболее достоверные сведения о взрыве можно получить путем проведения эксперимента. Однако, такой подход не всегда применим. Поэтому наиболее распространены расчетные методы, позволяющие определять значения параметров, характеризующих взрывы. В ходе расчетов используются следующие показатели:

  • вид и количество взрывчатого вещества (ВВ);
  • условия взрыва;
  • расстояние от места взрыва до места оценки его последствий;
  • параметры ударной волны;
  • степень повреждения (разрушения) зданий, сооружений, техники или степень поражения людей.

  • Для проведения расчетов разработано и представлено в технической литературе значительное количество функциональных зависимостей, которые связывают между собой эти показатели. Конкретный вид расчетных соотношений, выражающих эти функциональные зависимости, определяется условиями взрыва, к которым относятся: тип ВВ (конденсированное ВВ, газовоздушные смеси, пылевоздушные смеси и др.), место взрыва (воздушный, наземный или заглубленный взрыв), наличие преград, отражающих ударную волну и другие условия.

    Разные авторы предлагают разные виды функциональных зависимостей для определения одних и тех же показателей, позволяющие получить либо большую точность, либо простоту, либо какие-нибудь другие преимущества при проведении расчетов. Поэтому при выборе того или иного соотношения для проведения расчетов следует особое внимание обращать на систему ограничений, определяющих возможность его использования.

    Вся совокупность задач по проведению расчетов может быть разделена на две группы: задачи прогнозирования последствий взрыва по заданному количеству ВВ и задачи определения количества ВВ по заданным последствиям взрыва.

    Задачи прогнозирования соответствуют ситуации, когда взрыва еще не было, т.е. требуется рассчитать показатели, характеризующие будущий взрыв. В таких задачах в качестве исходных данных обычно используются сведения о количестве ВВ и об условиях взрыва. При этом в результате расчетов должны быть получены значения параметров ударной волны (или других поражающих факторов) на заданном расстоянии от места взрыва (прямая задача), или определено расстояние от места взрыва, на котором параметры ударной волны будут иметь заданное значение (обратная задача).

    Задачи определения исходных характеристик ВВ по результатам взрыва обычно приходится решать при расследовании и анализе причин аварийных взрывов. В этих задачах известны условия взрыва, место взрыва и степень разрушений по мере удаления от его эпицентра. В результате решения должно быть определено количество взорвавшегося вещества. Для расчетов в этих задачах используются те же функциональные зависимости между степенью повреждения, количеством ВВ и расстоянием от места взрыва, что и при решении задач прогнозирования.

    Настоящий курс лекций не предусматривает подробного рассмотрения всего многообразия вариантов проведения расчетов для различных условий взрыва и поражающих факторов. Далее будут рассматриваться только приближенные методы проведения расчетов, связанные с наиболее распространенными типами взрывов конденсированных ВВ и ГВС в открытом, не замкнутом пространстве. Из числа поражающих факторов взрыва будет рассматриваться только воздушная ударная волна.

    Расчетные соотношения, используемые при решении задач.

    Тротиловый эквивалент массы ВВ.

    Количество взрывчатого вещества или его массу М BB при проведении расчетов выражают через тротиловый эквивалент М Т. Тротиловый эквивалент представляет собой массу тротила, при взрыве которой выделяется столько же энергии, сколько выделится при взрыве заданного количества конкретного ВВ. Значение тротилового эквивалента определяется по соотношению:

    (1)

    \[М_{Т}=kM_{ВВ}\]

    где:
    M BB — масса взрывчатого вещества;

    k — коэффициент приведения взрывчатого вещества к тротилу1 (см. Таблицу 1).

    Таблица 1. Значения коэффициента k приведения взрывчатого вещества к тротилу

    Выражение (1) составлено для взрыва, при котором ударная волна распространяется во все стороны от точки взрыва беспрепятственно, т.е. в виде сферы. Очень часто на практике взрыв происходит на некоторой поверхности, например, на земле. При этом ударная волна распространяется в воздухе в виде полусферы.

    Для взрывов на абсолютно твердой поверхности вся выделившаяся при взрыве энергия распространяется в пределах полусферы и, следовательно, значение массы взрывающегося вещества как бы удваивается (в определенных случаях можно говорить о сложении прямой и отраженной волны).

    Для взрыва на не абсолютно твердой поверхности, например, на грунте, часть энергии расходуется на образование воронки. Учет этого расхода выполняется с помощью коэффициента ƞ, значения которого приведены в Таблице 2. Чем меньше подстилающая поверхность позволяет затрачивать энергию на образование воронки, тем ближе значение коэффициента ƞ к 1. Другой предельный случай соответствует ситуации, когда подстилающая поверхность беспрепятственно пропускает энергию взрыва, например, при взрыве в воздухе. В этом случае значение коэффициента равно 0.5.

    С учетом изложенного значение MT в общем случае определяется по формуле:

    (2)

    \[М_{Т}=2ƞkM_{ВВ}\]

    Выражение (2) для взрыва в воздухе, то есть при ƞ = 0.5, принимает вид (1).

    Таблица 2. Значения коэффициента ƞ, учитывающего характер подстилающей поверхности

    Закон подобия при взрывах

    Расчеты параметров ударной волны основываются на использовании соотношения, связывающего параметры взрывов разной мощности. Таким соотношением является закон подобия кубического корня . Согласно этому закону значения параметров ударной волны для взрыва некоторой мощности можно пересчитать для взрывов других мощностей, пользуясь выражениями закона подобия:

    (3)

    \ \[τ_{2}=τ_{1}\sqrt{\frac{M_{T2}}{M_{T1}}}\]

    где: R 2 ,R 1 — расстояния от центров двух взрывов до некоторых точек 1 и 2, в которых параметры ударной волны этих взрывов равны между собой;

    M T2 , M T1 — массы зарядов (точнее: эквиваленты масс, приведенные к некоторому эталону, в нашем случае к тротилу);

    τ 2 , τ 1 — время с момента взрыва до прихода ударной волны в эти точки.

    Выражение (3) можно представить в виде:

    (4)

    \[\frac{R_{2}}{\sqrt{{M_{T2}}}}=\frac{R_{1}}{\sqrt{{M_{T1}}}}=\frac{R}{\sqrt{{M_{T}}}}=\overline{R}\]

    Величина R называется приведенным радиусом взрыва и широко используется в различных расчетных соотношениях для определения параметров ударной волны взрыва.

    Оценка параметров ударной волны при взрыве конденсированных ВВ

    Избыточное давление ΔP для свободно распространяющейся сферической воздушной ударной волны убывает по мере удаления от места взрыва. Поэтому расчет его значений обычно проводится на основании соотношений, в которых давление является функцией двух аргументов — массы ВВ и расстояния от места взрыва.

    Сложность разработки и последующего использования таких аналитических выражений определяется следующим обстоятельством. Скорость спада значения ΔP по мере удаления от места взрыва изменяется за счет влияния на ударную волну среды, в которой она распространяется. Чем больше расстояние от места взрыва, тем сильнее искажается характер изменения давления во фронте ударной волны. Для двух ударных волн, которые при одинаковых условиях распространения в некоторый момент времени имели одно и тоже значение ΔP, в последующие моменты значения ΔP будут отличаться, если предыстория распространения этих волн была разной. Следовательно, расчетные соотношения для определения значений ΔP в эти последующие моменты также должны быть разными.

    По изложенным причинам в технической литературе представлен достаточно широкий спектр расчетных соотношений для определения значений ΔP, каждое из которых имеет свою сферу применения и назначение. Например, для воздушного взрыва, для наземного взрыва, для малых расстояний от места взрыва, для значительных расстояний от места взрыва, для относительно небольших зарядов ВВ, для крупных зарядов ВВ и т.д.

    При дальнейшем изложении в материалах курса будет использоваться одно базовое соотношение:

    (5)

    \[ΔP_{Ф}=\frac{84}{\overline{R}}+\frac{270}{{\overline{R}^{2}}}+\frac{700}{{\overline{R}^{3}}},(кПа),\]

    где R определяется из (2), (4).

    Это соотношение известно в технической литературе под названием «формула М. А. Садовского » и широко используется при проведении практических расчетов как для наземных, так и для воздушных взрывов.

    При необходимости решать обратную задачу, т.е. определять расстояние от места взрыва по заданному значению ΔP Ф, можно либо решать уравнение третьей степени (5) относительно R , либо воспользоваться соотношением:

    (6)

    \[\overline{R}=\sqrt{^{2}-1}\]

    Формула (6) дает хорошее совпадение с результатами точного решения уравнения (5). Для значений R в интервале от 2 до 12 ошибка не превышает 10 %. При этом расхождение тем больше, чем больше ΔP Ф.

    Удельный импульс I определяется по соотношению

    (7)

    \

    где ΔP(t) — функция, характеризующая изменение избыточного давления во фронте ударной волны за период времени от 0 до τ + .

    Кроме приведенных соотношений в технической литературе имеются соотношения для расчета значений и других параметров ударной волны: максимального давления разряжения, длительности фазы разряжения, скорости распространения ударной волны, давления скоростного напора, температуры во фронте ударной волны и др., однако в данном курсе эти соотношения не рассматриваются.

    Пример 1

    Прямая постановка задачи

    Определить избыточное давление, которое будет испытывать прибор, установленный на расстоянии 10 м от места взрыва 1кг гексогена во взрывном устройстве, размещенном на грунте.

    2. Определение R :

    \[\overline{R}=\frac{R}{\sqrt{M_{T}}}=\frac{10}{\sqrt{1,56}}=8,62\]

    3. Определение ΔP Ф:

    \[ΔP_{Ф}=\frac{84}{\overline{R}}+\frac{270}{{\overline{R}^{2}}}+\frac{700}{{\overline{R}^{3}}}=\frac{84}{8,62}+\frac{270}{{8,62^{2}}}+\frac{700}{{8,62^{3}}}=14,5 кПа\]

    Обратная постановка задачи

    Определить максимальное расстояние, на котором допускается установить прибор, выдерживающий давление 14,5 кПа, от места взрыва 1 кг гексогена во взрывном устройстве, размещенном на грунте.

    1. Определение R :

    \[\overline{R}=\sqrt{^{2}-1}=\sqrt{^{2}-1}=8,37\]

    2. Определение тротилового эквивалента:

    \[М_{Т}=2ƞkM_{ВВ}=2\cdot0,6\cdot1,3\cdot1=1,56 кг\]

    3. Определение R:

    Оценка параметров ударной волны при взрыве газовоздушных смесей

    Параметры ударной волны на расстояниях R < r o

    При взрывах газовоздушных смесей параметры внутри газового облака могут изменяться в очень широких пределах в зависимости от условий взрыва, концентрации горючей компоненты и характера взрывного горения, которые при прогнозировании взрывов, особенно на открытом воздухе, учесть практически невозможно. Поэтому обычно расчеты проводят для худшего случая, при котором разрушительные последствия взрыва наибольшие.

    Таким наихудшим случаем является детонационное горение смеси стехиометрического состава. Скорость распространения процесса детонационного горения внутри облака очень велика и превышает скорость звука. Давление внутри облака за время взрыва вообще говоря не постоянно. Однако для проведения приближенной оценки параметров взрыва можно условно принять, что облако имеет форму полусферы с центром на поверхности земли, взрыв ГВС происходит мгновенно и давление в процессе взрыва одинаково и постоянно во всех точках, находящихся внутри облака.

    Для большинства углеродоводородосодержащих газовых смесей стехиометрического состава можно принять, что давление внутри газового облака составляет 1700 кПа. Для проведения более точных расчетов в технической литературе приводятся расчетные соотношения, позволяющие рассчитать скорость детонационного горения, время полной детонации облака, давление в детонационной волне и др.

    Параметры ударной волны на расстояниях R > r o

    Формулы для определения значений параметров ударной волны на расстояниях, превышающих радиус полусферы газового облака в окружающем воздухе, получены путем аппроксимации численного решения задачи о детонации пропановоздушной смеси, выполненной Б. Е. Гельфандом. Решение получено интегрированием системы нестационарных уравнений газовой динамики в сферических координатах в переменных Лагранжа и позволяет получать результаты удовлетворительно согласующиеся с экспериментальными данными для горючих смесей различных углеводородов с воздухом.

    Максимальное избыточное давление во фронте ударной волны (кПа):

    (8)

    \[ΔP_{Ф}=P_{0}\cdot \overline{P};\]

    (9)

    \[\lg\overline{P}=0,65-2,18\lg\overline{R}+0,52(\lg\overline{R})^{2};\] \[\overline{R}=\frac{R}{\sqrt{M_{T}}},\]

    где: MТ — тротиловый эквивалент наземного взрыва полусферического облака ГВС (кг);

    P 0 — атмосферное давление, равное 100 кПа.

    Удельный импульс (Па ⋅ с):

    (10)

    \

    (11)

    \

    Тротиловый эквивалент (кг) определяется из соотношения (2), в котором k=Q/QТ и ƞ=1, т.е. в предположении, что энергия взрыва полусферического облака полностью отражена поверхностью, над которой это облако образовалось. С учетом изложенного:

    (12)

    \

    где: M В — масса вещества, взрывающегося в составе облака ГВС (кг);

    Q — теплота, выделяющаяся при сгорании данного вещества (кДж/кг);

    QТ — теплота взрыва тротила (4520 кДж/кг).

    Q представляет собой табличную величину (таблица 3), которая показывает количество энергии, выделяющейся при взрыве (сгорании) единицы массы данного вещества.

    Значение M В определяется соотношением

    (13)

    \

    где: M Хр — масса вещества, находившегося в хранилище до аварии (до взрыва);

    δ — коэффициент, зависящий от способа хранения вещества, показывающий долю вещества, переходящую при аварии в газ:

    δ=1 — для газов при атмосферном давлении,

    δ=0,5 — для сжиженных газов, хранящихся под давлением,

    δ=0,1 — для сжиженных газов, хранящихся изотермически,

    δ=0,02–0,07 — для растекшихся ЛВЖ;

    Объем газового облака V 0 и размер полусферы газового облака r 0 зависят от количества исходного вещества, находившегося в хранилище до аварии, и способа его хранения. Определение этих параметров может быть выполнено по формулам:

    (14)

    \ \

    где: V a — объем киломоля идеального газа (постоянная Авогадро: V a =22,4 м³/кмоль);

    μ — молярная масса хранящегося вещества (кг/кмоль);

    C стх — стехиометрическая объемная концентрация (в абсолютных долях).

    Приближенно для наиболее часто используемых углеводородов можно пользоваться при расчетах формулой:

    где: M Хр — количество вещества, находившегося в хранилище до аварии (взрыва) в т;

    0.6 — коэффициент, учитывающий способ хранения.

    Значения параметров, характеризующих некоторые вещества, приведены в таблице 3.

    Таблица 3. Значения параметров, характеризующих некоторые вещества и их смеси с воздухом

    Пример 2

    Определить с помощью расчета по формулам избыточное давление и удельный импульс во фронте ВУВ на расстоянии 100 м от емкости, в которой находится 10 т. пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.

    1. Определение массы пропана в составе ГВС

    2. Определение тротилового эквивалента

    3. Определение приведенного радиуса взрыва

    4. Определение избыточного давления во фронте ударной волны

    \[\lg\overline{P}=0,65-2,18\lg\overline{R}+0,52(\lg\overline{R})^{2}=0,65-2,18\cdot\lg2,14+0,52\cdot(\lg2,14)^{2}=-0,0135,\]

    \[\overline{P}=10^{0,0135}=0,97,\]

    следовательно

    \[ΔP_{Ф}=P_{0}\cdot \overline{P}=100\cdot0,97=97 кПа\]

    5. Определение значения удельного импульса ударной волны

    \[\overline{I}=10^{1,84}=69,2,\] \

    Приближенная оценка параметров взрывной волны за пределами облака может быть проведена по таблице 4, в которой представлены значения избыточного давления ΔP Ф и эффективного времени действия фазы сжатия θ, заранее рассчитанные для различных значений R/r 0 . Значения параметров, указанных в таблице, получены исходя из давления внутри газового облака 1700 кПа.

    Таблица 4. Значения максимального избыточного давления и эффективного времени действия ударной волны при взрыве ГВС

    R/r 0 0–1 1.01 1.04 1.08 1.13 1.2 1.4 1.8
    ΔP Ф, кПа 1700 1232 814 568 500 400 300 200
    10 3 θ/r 0 , с/м 0.37 0.53 0.74 0.97 1.00 1.07 1.10 1.25
    R/r0 2.7 3 4 5 6 8 12 15 40
    ΔP Ф, кПа 100 80 50 40 30 20 10 7.8 2.5
    10 3 θ/r 0 , с/м 1.7 1.78 2.18 2.30 2.59 3.02 3.53 3.76 4.39

    Пример 3

    Определить приближенным методом, по таблице избыточное давление во фронте ВУВ на расстоянии 100 м от емкости, в которой находится 55 т пропана, хранящегося в жидком виде под давлением, при ее разгерметизации и взрыве образовавшейся ГВС.

    1. Определение r 0

    2. Определение R/r 0 = 100/31 = 3,2

    3. По таблице 4 находим, что ΔP Ф = 80 кПа (с учетом интерполяции 74 кПа).

    Оценка степени повреждения зданий в условиях городской застройки

    При взрывах в условиях городской застройки характер распространения ударной волны существенно изменяется из-за ее многократного отражения и экранирования стенами зданий. По этим же причинам обычно используемые для расчета значений ΔP формулы, в том числе и рассмотренные выше, неприменимы.

    Для оценки степени повреждения или разрушения зданий в городе широко используется формула, полученная в Великобритании по результатам анализа последствий бомбардировок во время второй мировой войны:

    (15)

    \

    где: R — расстояние от места взрыва в метрах;

    M T — тротиловый эквивалент заряда в килограммах;

    K — коэффициент, соответствующий различным степеням разрушения:

    К<5.6 — полное разрушение зданий;

    К=5.6–9.6 — сильные разрушения здания (здание подлежит сносу);

    К=9.6–28 — средние разрушения (возможно восстановление здания);

    К=28–56 — разрушение внутренних перегородок, дверных и оконных проемов;

    К=56 — разрушение 90% остекления.

    Пример 4

    Определить для условий городской застройки расстояние, начиная с которого здания получат сильные разрушения при взрыве боеприпаса, начиненного 500 кг гексогена.

    1. Определение тротилового эквивалента:

    \[М_{Т}=kM_{ВВ}=1,3\cdot500=650 кг\]

    2. Определение искомого расстояния:

    Оценка степени повреждения отдельно стоящих зданий

    Под воздействием ударной волны здания и сооружения ведут себя как упругие колебательные системы. Расчетная оценка такого воздействия требует решения достаточно сложных динамических задач, связанных с описанием поведения упругих конструктивных элементов зданий и сооружений под воздействием ударных нагрузок, определяемых изменяющимися во времени и пространстве параметрами ударной волны. Возникающие в конструктивных элементах нагрузки зависят от параметров волны, характеристик объекта, его размеров и ориентации относительно фронта волны.

    Наиболее точную оценку последствий воздействия ударной волны на конкретный объект позволяет получить эксперимент, проводимый на его макете с соблюдением правил подобия. Однако применение экспериментальных методов оценки далеко не всегда возможно.

    Накопленный опыт исследования объектов, подвергавшихся воздействию взрывов, и результатов экспериментов с макетами выявил ряд закономерностей, позволяющих упрощенными методами оценивать возможные ожидаемые последствия воздействия взрывов на здания и сооружения. Ниже будут рассмотрены два метода: по допустимому давлению при взрыве и по диаграмме разрушения объекта.

    По допустимому давлению при взрыве

    Избыточные давления, при которых наступают различные степени разрушений одного из возможных типов зданий, приведены в Таблице 5. При использовании таблицы следует иметь ввиду, что она соответствует ударной волне ядерного взрыва, т.е. учитывает воздействие на объект только избыточного давления и не учитывает поражающее действие импульса. Для других видов взрывов, например для взрывов конденсированных ВВ или ГВС, значения давлений, приведенных в таблице, должны быть увеличены в 1.5 раза и более в зависимости от мощности взрыва и после этого сопоставлены со значениями избыточного давления. рассчитанными по формуле (5). При использовании таблицы следует иметь ввиду, что результат оценки будет приблизительным, поскольку не учитывается действие импульса.

    Таблица 5. Действие ΔP Ф на объекты и людей

    Объект воздействия Степень воздействия ΔP Ф
    Кирпичное здание производственного типа Полное разрушение > 70 кПа
    Сильные разрушения 33–70 кПа
    Средние разрушения 25–33 кПа
    Слабые разрушения 12–25 кПа
    Остекление Разрушение на 90 % 5 — 10 кПа
    на 50 % 2 — 5 кПа
    на 5 % 1 — 2 кПа
    Люди Крайне тяжелое поражение > 100 кПа
    Тяжелое поражение 60–100 кПа
    Среднее поражение 40–60 кПа
    Легкие поражения 20–40 кПа

    В таблице в качестве примера приведены данные только для одного типа здания. В справочной литературе имеются аналогичные сведения для большого числа различных зданий и сооружений. В таблице также приведены данные, позволяющие оценить степень поражения людей действием давления ударной волны.

    Пример 5

    Определить по таблице степень разрушения кирпичного здания при взрыве на расстоянии 10м от него на грунте заряда гексогена массой 10 кг.

    1. Определение тротилового эквивалента:

    2. Определение R

    3. Определение ΔP Ф:

    4. Увеличивая табличные значения давлний или уменьшая рассчитанное значение ΔP Ф в 1.5 раза по таблице 5 определяем, что здание получит средние разрушения.

    По диаграмме разрушений

    Более точная оценка может быть получена на основе использования диаграмм, в которых результат воздействия ударной волны зависит от давления и импульса. Каждому конкретному объекту соответствует своя диаграмма степени разрушений, типичная форма которой приведена на рисунке 1.

    Как следует из диаграммы, лишь небольшая зона А характеризуется зависимостью степени разрушений как от давления, так и от импульса. Остальная часть плоскости соответствует прямым ΔP=const (зона В), где влияние импульса мало, и прямым I=const (зона С), где не ощущается влияния давления.

    Недостаток такого подхода к оценке степени разрушения зданий состоит в том, что составление диаграммы для конкретного объекта представляет собой достаточно сложную задачу.

    Пример 6

    Определить по диаграмме степень разрушения кирпичного здания, если на расстоянии 10 м от него произойдет взрыв 10 кг гексогена на грунте.

    1. Определение тротилового эквивалента:

    \[М_{Т}=2ƞkM_{ВВ}=2\cdot0,6\cdot1,3\cdot10=1,56 кг\]

    2. Определение R

    \[\overline{R}=\frac{R}{\sqrt{M_{T}}}=\frac{10}{\sqrt{15,6}}=4\]

    3. Определение ΔP Ф:

    \[ΔP_{Ф}=\frac{84}{\overline{R}}+\frac{270}{{\overline{R}^{2}}}+\frac{700}{{\overline{R}^{3}}}=\frac{84}{4}+\frac{270}{{4^{2}}}+\frac{700}{{4^{3}}}=48,8 кПа\]

    4. Определение значения удельного импульса:

    5. По диаграмме разрушений кирпичных зданий определяем, что здание получит средние разрушения.

    Рисунок 1. Диаграмма разрушения кирпичных зданий.

    Определение безопасных расстояний при взрывах

    Безопасными расстояниями для людей при взрывах считаются такие расстояния, при которых человек не получает травм. При прямом воздействии воздушной ударной волны на человека границей опасной зоны является расстояние от центра взрыва до условной линии (радиус окружности), где давление фронта ударной волны ΔP Ф не превышает 10 кПа.

    В Российской Федерации установлены единые правила определения безопасных расстояний обязательные к соблюдению всеми организациями, выполняющими взрывные работы. За основу проведения расчета минимально возможного безопасного расстояния в этих правилах принята формула:

    (16)

    \

    где: R > R без — безопасное расстояние в метрах;

    M T — тротиловый эквивалент взрывчатого вещества в килограммах;

    К — коэффициент, зависящий от условий взрыва.

    Значения коэффициента К при размещении людей без укрытий устанавливаются в диапазоне от 30 до 45 для разных типов взрывов. В исключительных случаях, когда требуется максимально возможное приближение персонала к месту взрыва, R без может быть определено при коэффициенте 15, а например при укрытии людей в блиндажах К составляет 9,3.

    Единые правила определения безопасных расстояний предусматривают правила расчета этих расстояний не только для человека, но и для зданий (сооружений), и для различных видов взрывов.

    Пример 7

    Определить безопасное расстояние для размещения людей в блиндаже при взрыве 50 кг аммонала.

    1. Определение тротилового эквивалента:

    \[М_{Т}=ƞkM_{ВВ}=0,99\cdot50=49,5 кг\]

    2. Определение безопасного расстояния:

    \

    Материалы факультета военного обучения (МГТУ им. H. Э. Баумана)

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ, НАУКИ, молодежи

    И спорта УКРАИНЫ

    ОДЕССКИЙ НАЦИОНАЛЬНЫЙ МОРСКОЙ УНИВЕРСИТЕТ


    Кафедра «Охрана и безопасность на море»

    гражданская защита

    и оценка последствий в чрезвычайных ситуациях

    Методические указания

    для проведения самостоятельной работы студентов по дисциплине «гражданская защита»

    Лабораторная работа № 5.

    Тема: “Оценка инженерной обстановки чрезвычайных ситуаций

    Одесса 2012

    ЛАБОРАТОРНАЯ РАБОТА № 5

    Тема: “Оценка инженерной обстановки чрезвычайных ситуаций”

    Учебная цель :освоение методики оценки инженерной обстановки ЧС на взрыво- и пожароопасных объектах

    Материальное обеспечение: Методические указания«Гражданская защита и оценка последствий чрезвычайных ситуаций. Часть 1. »; Демиденко Г.П., и др. Справочник. «Защита объектов ОНХ от ОМП ». К.,1986; таблицы.

    План проведения занятия:

    Вопросы, подлежащие изучению Время, мин
    1. Определение понятий и анализ исходных данных. Самост. работа
    2. Методика расчета параметров зоны разрушений при взрыве ГВС в открытой атмосфере. Самост. работа
    3. Расчет параметров зоны разрушений при взрыве ГВС в открытой атмосфере (пример).
    4. Решение задач по оценке инженерной обстановки в зонах чрезвычайных ситуаций.

    Отчетность: Выполнить задания 3-4. Законспектировать в тетрадь все вопросы плана занятия. Произвести расчеты представленных задач по оценке инженерной обстановки в ЧС на взрыво- и пожароопасных объектах и сделать соответствующие выводы.

    Задания 1-2 выносится на самостоятельную работу (срок выполнения не более одной недели).

    Оценка инженерной обстановки чрезвычайных ситуаций на взрыво- и пожароопасных объектах

    Общие сведения

    Инженерная обстановка - это совокупность последствий стихийных бедствий, аварий (катастроф), а также первичных и вторичных поражающих факторов современных средств поражения, в результате которых имеет место разрушение зданий, сооружений, оборудования, коммунально-энергетических объектов, средств связи и транспорта, мостов, плотин, аэродромов и т. д., что существенно влияет на устойчивость работы объектов экономики и жизнедеятельность населения. Особую опасность с точки зрения частоты возникновения, возможных потерь и полученных убытков представляют собой взрывы, которые могут привести к человеческим жертвам, разрушению производственных сооружений, нарушению производственной деятельности важных объектов на долгое время.

    Взрыв – это процесс быстрого освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени. При этом в окружающей среде образуется и распространяется взрывная волна. Взрыв несет опасность поражения людей и обладает разрушительной способностью. Взрывы могут быть направленными или объёмными .

    По виду взрывчатого вещества (ВВ) различают взрывы конденсированных ВВ (тротил, гексоген, порох и т. п.), взрывы газопаровоздушных смесей (ГПВС) и аэрозолей (пылевоздушных смесей).

    Основными поражающими факторами взрыва являются: воздушная ударная волна (УВ) и осколочные поля, создаваемые летящими обломками разного рода объектов техногенного образования, строительных деталей и т. д.

    Основными параметрами поражающих факторов взрыва являются:

    – воздушной ударной волны – избыточное давление во фронте (ΔР ф ), скоростной напор воздуха (ΔР ск ) и время действия избыточного давления во фронте (tΔР ф );

    – осколочного поля – количество осколков, их кинетическая энергия и радиус разлета.

    Однако на практике в качестве определяющего параметра воздушной ударной волны принимают избыточное давление во фронте волны. За единицу измерения ΔР ф в системе СИ принят Паскаль (Па ), внесистемная единица – кгс/см². Соотношения: 1 Па = 1 Н/м² = 0,102 кгс/см²; 1 кгс/см² = 98,1 кПа ≈ 100 кПа.

    На промышленных предприятиях наиболее взрывоопасными являются образующиеся в нормальных или аварийных условиях газо-паровоздушные смеси (ГПВС) и пылевоздушные смеси (ПВС). Из ГПВС наиболее опасны взрывы смесей углеводородных газов с воздухом, а так же паров легковоспламеняющихся горючих жидкостей. Взрывы ПВС происходят на мукомольном производстве, на зерновых элеваторах, при обращении с красителями, при производстве пищевых продуктов, лекарственных препаратов, на текстильном производстве. В результате действия поражающих факторов взрыва происходит разрушение или повреждение зданий, сооружений, технологического оборудования, транспортных средств, элементов объекта экономики (ОЭ), гибель людей.

    Особенностями безопасной работы ОЭ в мирное время в условиях взрывов являются различные условия оценки безопасности существующих взрывоопасных конструкций на территории ОЭ.

    Такими условиями являются:

    1) оценка безопасности ОЭ при уже встроенных взрывоопасных конструкциях;

    2) оценка безопасности ОЭ при установке новых взрывоопасных конструкций;

    3) оценка безопасности проектирующихся предприятий с взрывоопасными конструкциями.

    Наиболее частыми случаями в условиях Украины является оценка безопасности при уже встроенных взрывоопасных конструкциях.

    При втором и третьем случае, возникает необходимость минимаксных решений, т. е. обеспечение минимума финансовых затрат при максимуме безопасности работы .

    Максимум безопасности может обеспечиваться заглублением взрывоопасных конструкций, увеличением расстояния до зданий и сооружений предприятия и другими мероприятиями, связанными с контролем, сигнализацией, охраной и т. д.

    Оценка инженерной обстановки объекта включает:

    1. Определение масштабов и степени разрушения элементов объекта в целом, степени разрушений зданий, объектов и др., в том числе защитных сооружений для укрытия рабочих и служащих, размеры зон завалов, объема инженерных работ, возможности объектовых и приданных формирований по проведению аварийно-спасательных и неотложных работ (АСиНР).
    2. Анализ их влияния на устойчивость работы отдельных элементов и объекта в целом, а также жизнедеятельность населения.
    3. Выводы об устойчивости отдельных элементов и объекта в целом к действию поражающих факторов и рекомендаций по ее повышению, предложения по осуществлению аварийно-спасательных и неотложных работ.

    Исходными данными для оценки инженерной обстановки являются :

    – сведения о наиболее вероятных стихийных бедствиях, авариях (катастрофах), противнике, его намерениях и возможностях по применению оружия массового поражения (ОМП) и других современных средств поражения;

    – характеристики первичных и вторичных поражающих факторов средств поражения;

    – характеристики защитных сооружений для укрытия рабочих и служащих;

    – инженерно-технический комплекс организации и его элементов.

    После оценки инженерной обстановки и выводов из нее подготавливают предложения по инженерному обеспечению АСиНР. В предложениях по инженерному обеспечению указываются:

    – объекты города, района, на которых необходимо сосредоточить основные усилия инженерных сил и средств;

    – основные инженерные мероприятия по обеспечению ввода сил гражданской защиты (ГЗ) в очаги поражения;

    – мероприятия по организации неотложных работ на коммунально-энергетических сетях;

    – организация инженерного обеспечения спасательных работ на объектах и в жилой зоне;

    – общие объемы инженерных работ, потребность в силах и средствах для их выполнения;

    – порядок использования имеющихся в наличии формирований инженерной техники.

    Объем и сроки проведения АСиНР (аварийно-спасательных и неотложных работ) зависят от степени разрушения зданий, сооружений и объектов экономики. При определении степени разрушения учитывается характер разрушения, ущерб и возможность дальнейшего использования и восстановления.

    Приняты следующие степени разрушений: полное, сильное, среднее и слабое, Каждой степени разрушения отвечает свое значение ущерба, объема АСиНР, а также объемы и сроки проведения восстановительных работ.

    R 50 - ∆P ф ≥ 50 кПа – зона полных разрушений - разрушение всех элементов зданий, включая подвальные помещения, люди получают тяжелые переломы, разрывы внутренних органов, возможен летальный исход. Убытки составляют более 70 % стоимости основных производственных фондов. Здания и сооружения восстановлению не подлежат.

    R 30 - ∆P ф = 30…50 кПа – зона сильных разрушений – разрушение частей стен и перекрытий верхних этажей, трещины в стенах, деформация перекрытий нижних этажей, при этом люди могут получить сильные вывихи, переломы, ушибы головы. Убытки составляют 30 – 70 % стоимости основных производственных фондов, возможно ограниченное использование мощностей, которые сохранились. Восстановление возможно путем капитального ремонта.

    R 20 - ∆P ф = 20…30 кПа – зона средних разрушений – разрушение второстепенных элементов зданий и сооружений (кровель, перегородок, оконных и дверных рам), возможное появление трещин в стенах. Перекрытия, как правило, не рухнувшие, подвальные помещения сохранились, поражение людей – в основном обломками конструкций. Убытки составляют 10 – 30 % стоимости основных производственных фондов. Промышленное оборудование, техника, транспортные средства восстанавливаются в порядке среднего ремонта, а здания и сооружения – после текущего или капитального ремонта.

    R 10 - ∆P ф = 10…20 кПа – зона слабых разрушений – разрушение оконных и дверных заполнений, перегородок, подвалы и нижние этажи сохранились и пригодны к временному использованию после текущего ремонта зданий, сооружений, оборудования и коммуникаций. Убытки составляют до 10 % стоимости основных производственных фондов (зданий, сооружений). Восстановление возможно путем текущего ремонта.

    Для взрывоопасных ОЭ наиболее характерны аварии с выбросом газо-паровоздушных смесей (ГПВС) углеводородных веществ с образованием детонационных взрывов. Ниже дается методика оценки зон разрушений для аварии с выбросом газо-паровоздушных смесей.

    Методика расчета параметров зоны ЧС (разрушений) при взрыве ГПВС в открытой атмосфере

    При взрыве ГПВС образуется зона ЧС с ударной волной (УВ), вызывающей разрушения зданий, оборудования и т. п. аналогично тому, как это происходит от УВ ядерного взрыва. В данной же методике зону ЧС при взрыве ГПВС делят на 3 зоны: зона детонации (детонационной волны); зона действия (распространения) ударной волны; зона воздушной УВ (Рис. 24).

    Рис. 24. Зоны чрезвычайной ситуации при взрыве газо-паровоздушной смеси.

    r 1 – радиус зоны детонационной волны (зона I); r 2 – радиус зоны действия УВ взрыва (зона II); r 3 – радиус зоны действия воздушной УВ (зона III).

    Зона детонационной волны (зона I ) находится в пределах облака взрыва. Радиус этой зоны r 1 ,м приближенно может быть определен по формуле

    Q - количество взрывоопасной ГПВС, хранящейся в емкости, т.

    17,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва.

    В пределах зоны I действует избыточное давление (ΔР ф ), которое принимается постоянным ΔР ф1 = 1700 кПа.

    Зона действия УВ взрыва (зона II ) – охватывает всю площадь разлета ГПВС в результате ее детонации. Радиус этой зоны:

    r 2 = 1,7 r 1

    Избыточное давление в пределах зоны II изменяется от 1350 кПа до 300 кПа и находится по формуле:

    ΔР ф2 = 1300(r 1 /r ) + 50 , где

    r – расстояние от центра взрыва до рассматриваемой точки, м.

    В зоне действия воздушной УВ (зона III ) – формируется фронт УВ, распространяющийся по поверхности земли. Радиус зоны r 3 >r 2 , и r 3 - это расстояние от центра взрыва до точки, в которой требуется определить избыточное давление воздушной УВ (ΔР ф3): r 3 =r . Избыточное давление в зоне III в зависимости от расстояния до центра взрыва рассчитывается по формуле:

    ΔР ф3 = , при Ψ ≤ 2 ,

    ΔР ф3 = , при Ψ ≥ 2 ,

    где Ψ = 0,24r 3 /r 1 = (0,24 r )/(17,5 ) – относительная величина.

    Степени разрушений элементов объекта при различных избыточных давлениях ударной волны приведены в таблице 16.

    Расстояния (м )от центра взрыва до внешних границ зон разрушения (R i )рассчитываются по формуле:

    r 1 – радиус зоны детонационной волны;

    ψ – определенный коэффициент, который принимается равным:

    – для зоны слабых разрушений ψ 10 = 2,825;

    – для зоны средних разрушений ψ 20 = 1,749;

    – для зоны сильных разрушений ψ 30 = 1,317;

    – для зоны полных разрушений ψ 50 = 1,015.

    Площади зон разрушения и очага поражения рассчитываются по формуле:

    S = π R ² , где

    R – радиус каждой из зон разрушений.

    ПРИКАЗ от 11 марта 2013 года N 96 Об утверждении Федеральных норм и правил в области промышленной безопасности Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств

    Приложение N 3

    к Федеральным нормам и правилам

    в области промышленной безопасности

    "Общие правила взрывобезопасности для

    взрывопожароопасных химических,

    нефтехимических и нефтеперерабатывающих

    производств", утверждённым приказом

    Федеральной службы по экологическому,

    технологическому и атомному надзору

    Расчет участвующей во взрыве массы вещества и радиусов зон разрушений

    В целях обоснования безопасного размещения установок, зданий, сооружений на территории взрывопожароопасного производственного объекта в общем случае следует проанализировать риск взрыва топливно-воздушных смесей (далее - ТВС), образующихся при аварийном выбросе опасных (горючих, воспламеняющихся) веществ. Риск взрыва является мерой опасности, характеризующая возможность и тяжесть последствий взрыва. Оценка риска взрыва является частью анализа риска аварии.

    Расчет зон поражения, разрушения (последствий взрыва) необходимо применять при выборе технических мероприятий по защите объектов и персонала от ударно-волнового воздействия взрыва парогазовых сред, а также твердых и жидких химически нестабильных соединений (перекисные соединения, ацетилениды, нитросоединения различных классов, продукты осмоления, трихлористый азот), способных взрываться.

    Расчеты размеров зон поражения следует проводить по одной из двух методик:

    1) методика оценки зон поражения, основанная на "тротиловом эквиваленте" взрыва ТВС;

    2) методика, учитывающая тип взрывного превращения (детонация/дефлаграция) при воспламенении ТВС.

    1. Методика расчета "тротилового эквивалента" дает ориентировочные значения участвующей во взрыве массы вещества без учета дрейфа облака ТВС. В данной методике приняты следующие условия и допущения.

    1.1. В расчетах принимаются общие приведенные массы парогазовых сред m и соответствующие им энергетические потенциалы E, полученные при определении категории взрывоопасности технологических блоков согласно приложению N 2 к настоящим Правилам.

    Для конкретных реальных условий значения m и E могут определяться другими методами с учетом эффекта диспергирования горючей жидкости в атмосфере под воздействием внутренней и внешней энергий, характера раскрытия технологической системы, скорости истечения горючего продукта в атмосферу и других возможных факторов.

    Масса твердых и жидких химически нестабильных соединений Wx определяется по их содержанию в технологической системе, блоке, аппарате.

    1.2. Масса парогазовых веществ, участвующих во взрыве, определяется произведением

    где z- доля приведенной массы парогазовых веществ, участвующих во взрыве.

    В общем случае для неорганизованных парогазовых облаков в незамкнутом пространстве с большой массой горючих веществ доля участия во взрыве может приниматься равной 0,1. В отдельных обоснованных случаях доля участия веществ во взрыве может быть снижена, но не менее чем до 0,02.

    Для производственных помещений (зданий) и других замкнутых объемов значения z могут приниматься в соответствии с таблицей N 1.

    Таблица N 1

    Значение z для замкнутых объемов (помещений)

    1.3. Источники воспламенения могут быть постоянные (печи, факелы, невзрывозащищенная электроаппаратура) или случайные (временные огневые работы, транспортные средства), которые могут привести к взрыву парогазового облака при его распространении.

    1.4. Для оценки уровня воздействия взрыва может применяться тротиловый эквивалент. Тротиловый эквивалент взрыва парогазовой среды WT (кг), определяемый по условиям адекватности характера и степени разрушения при взрывах парогазовых облаков, а также твердых и жидких химически нестабильных соединений рассчитывается по формулам:

    1.4.1. Для парогазовых сред

    где 0,4 - доля энергии взрыва парогазовой среды, затрачиваемая непосредственно на формирование ударной волны;

    0,9 - доля энергии взрыва тринитротолуола (ТНТ), затрачиваемая непосредственно на формирование ударной волны;

    q" - удельная теплота сгорания парогазовой среды, кДж/кг;

    qk - удельная энергия взрыва ТНТ, кДж/кг.

    1.4.2. Для твердых и жидких химически нестабильных соединений

    где Wk - масса твердых и жидких химически нестабильных соединений;

    q k- удельная энергия взрыва твердых и жидких химически нестабильных соединений.

    1.5. Зоной разрушения считается площадь с границами, определяемыми радиусами R , центром которой является рассматриваемый технологический блок или наиболее вероятное место разгерметизации технологической системы. Границы каждой зоны характеризуются значениями избыточных давлений по фронту ударной волны ΔP и соответственно безразмерным коэффициентом K .

    Классификация зон разрушения приводится в таблице N 2.

    Таблица N 2

    Классификация зон разрушения

    1.5.1. Радиус зоны разрушения (м) в общем виде определяется выражением:

    где K - безразмерный коэффициент, характеризующий воздействие взрыва на объект.

    При массе паров m более 5000 кг радиус зоны разрушения может определяться выражением:

    1.5.2. Для выполнения практических инженерных расчетов радиусы зон разрушения могут определяться выражением

    где при m < 5000 кг

    или при m > 5000 кг

    2. Методика, учитывающая тип взрывного превращения (детонация/дефлаграция) при воспламенении ТВС.

    2.1. Для более точных расчетов зон разрушения и оценки риска взрыва рекомендуется использовать следующие соотношения.

    Масса вещества, способного участвовать во взрыве, определяется путем интегрирования концентрации выброшенного при аварии горючего вещества по пространству, ограниченному поверхностями Σ вкпр и ∑ нкпр по формуле:

    где х, у, z - пространственные переменные, ΣВКПР и Σ НКПР - поверхности в пространстве достижения соответственно верхнего и нижнего концентрационных пределов, c (x, y, z, t0) - распределение концентрации в момент времени t0, кг/м3; t0- момент времени воспламенения или момент времени, когда во взрывоопасных пределах находится максимальное количество топлива, с.

    Рассчитываются основные параметры воздушных ударных волн (избыточное давление ΔP и импульс волны давления I) в зависимости от расстояния до центра облака (в том числе с учетом возможного дрейфа облака ТВС).

    Для вычисления параметров воздушной ударной волны на заданном расстоянии R от центра облака при детонации облака ТВС предварительно рассчитывается соответствующее безразмерное расстояние по соотношению:

    где E - эффективный энергозапас ТВС, Дж (E = m·q, где q - теплота сгорания топлива в облаке).

    В случае детонации облака газовой ТВС расчет производится по следующим формулам:

    Зависимости (13) и (14) справедливы для значений Rx больших величины Rk=0,25. В случае если Rxk , величина Px полагается равной 18, а величина Ix=0,16.

    В случае дефлаграционного взрывного превращения облака ТВС к параметрам, влияющим на величины избыточного давления и импульса положительной фазы, добавляются скорость видимого фронта пламени Vr и степень расширения продуктов сгорания σ. Для газовых смесей принимается σ=7, для гетерогенных - σ=4. Для расчета параметров ударной волны при дефлаграции гетерогенных облаков величина эффективного энергозапаса смеси домножается на коэффициент (σ-1)/σ. Величина Vr определяется исходя из взрывоопасных свойств горючего вещества и загроможденности окружающего пространства, влияющего на турбулизацию фронта пламени.

    Безразмерные давление P x1 и импульс фазы сжатия I x1 определяются по соотношениям:

    Px1=((0,83/Rx-0,14/R2x);

    Ix1=(V2/C0)2((σ-1/σ)(1-0,4(σ-1)V2/σC0)x(0,06/Rx+0,01/R2x-0,0025/R3x).

    Последние два выражения справедливы для значений Rx, больших величины Rкр= 0,34, в противном случае вместо Rx в соотношения (15) и (16) подставляется величина R кр.

    Далее вычисляются величины Px2 и Ix2 , которые соответствуют режиму детонации и для случая детонации газовой смеси рассчитываются по соотношениям (11), (12), а для детонации гетерогенной смеси - по соотношениям (13), (14). Окончательные значения Px и Ix выбираются из условий:

    Px= min (Px1 , Px2) : Ix =min (Ix1, Ix2) (17)

    После определения безразмерных величин давления и импульса фазы сжатия вычисляются соответствующие им размерные величины:

    I=Ix (P0)2/3E1/3/C0 (19)

    2.2. Для расчета условной вероятности разрушения объектов и поражения людей ударными волнами используется пробит-функция, значение которой определяется следующим образом:

    а) вероятность повреждений стен промышленных зданий, при которых возможно восстановление зданий без их сноса, может оцениваться по соотношению:

    Δ P- избыточное давление, Па;

    I - импульс, кг·м/с;

    б) вероятность разрушений промышленных зданий, при которых здания подлежат сносу, оценивается по соотношению.

    Pr2=5-0,22 .lnV2 (21)

    При взрывах ТВС внутри резервуаров и другого оборудования, содержащего газ под давлением, в общем случае следует учитывать опасность разлета осколков и последующее развитие аварии, сопровождаемое "эффектом домино" с распространением аварии на соседнее оборудование, если оно содержит опасные вещества.

    в) вероятность длительной потери управляемости у людей (состояние нокдауна), попавших в зону действия ударной волны при взрыве облака ТВС, может быть оценена по величине пробит-функции:

    Pr3= 5-5.74·InV3 (22)

    Вероятность отброса людей волной давления оценивается по величине пробит-функции:

    При использовании пробит-функции в качестве зон 100-процентного поражения принимаются зоны поражения, где значение пробит-функции достигают величины, соответствующей вероятности 90 процентов. В качестве зон безопасных с точки зрения воздействия поражающих факторов принимается зоны поражения, где значение пробит-функции достигают величины, соответствующей вероятности 1 проценту.

    2.3. Вероятность гибели людей, находящихся в зданиях.

    Для расчета условной вероятности гибели людей, находящихся в зданиях, используются данные о гибели людей при разрушении зданий при взрывах и землетрясениях. Исходя из типа зданий и избыточного давления ударной волной, оценивается степень разрушения производственных и административных зданий. Данные приведены в таблице N 3. Условная вероятность травмирования и гибели людей определяется по таблице N 4.

    Данные уточняются при их обосновании с указанием источника информации.

    Таблица N 3

    Данные о степени разрушения производственных, административных зданий и сооружений, имеющих разную устойчивость

    Тип зданий, сооружений

    Разрушение при избыточном давлении на фронте ударной волны, кПа

    Промышленные здания с легким каркасом и бескаркасной конструкцией

    Складские кирпичные здания

    Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла

    Бетонные и железобетонные здания и антисейсмические конструкции

    Здания железобетонные монолитные повышенной этажности

    Котельные, регуляторные станции в кирпичных зданиях

    Деревянные дома

    Подземные сети, трубопроводы

    Трубопроводы наземные

    Кабельные подземные линии

    Цистерны для перевозки нефтепродуктов

    Резервуары и емкости стальные наземные

    Поземные резервуары

    Таблица N 4

    Зависимость условной вероятности поражения человека с разной степенью тяжести от степени разрушения здания

    Величина индивидуального риска для i-го человека или риска разрушения i-го здания Ri (год -1) определяется по формуле (25).

    где (Pi) принимается равной величине потенциального риска в j-ой области территории, год-1 (определяется методами количественной оценки риска) при расчете индивидуального риска, или принимается равной прогнозируемой частоте реализации в j-ой области территории нагрузок (давление, импульс), способных привести к разрушению i-го здания при расчете риска разрушения зданий;

    (Pi) - принимается равной вероятности присутствия человека в j-ой области территории при расчете индивидуального риска, или принимаются равной 1 в случае, если i-e здание располагается в j-ой области территории и нулю, в противном случае, при расчете риска разрушения зданий;

    Год-1 - число областей, на которые условно можно разбить территорию объекта, при условии, что величина потенциального риска на всей площади каждой из таких областей можно считать одинаковой.

    Электронный текст документа

    подготовлен и сверен по:

    Бюллетень нормативных актов федеральных

    органов исполнительной власти,

    Это упрощенная и достаточно объективная методика, рассмотренная в работах . На основе анализа и обобщения материалов аварий со взрывом ГВС в очаге поражения (взрыва) на открытой местности (атмосфере) выделяют две зоны: детонации (детонационной волны); распространения (действия) ударной волны (УВ).

    Условный (расчетный) радиус зоны детонации (детонационной волны) r 0 определяют по эмпирической формуле:

    r 0 =18.5· (2.5),

    где k – коэффициент, характеризующий объем газов или паров веществ, переходящих во взрывоопасную смесь. Его значения в расчетах принимаются k=0.4-0.6 . В некоторых методиках значение коэффициента k принимают в зависимости от способа хранения продукта: k = 1 - для резервуаров с газообразным веществом;

    k = 0,6 - для газов, сжиженных под давлением;

    k = 0,1 - для газов, сжиженных охлаждением (хранящихся в изотермических емкостях);

    k = 0,05 - при аварийном разливе легковоспламеняющихся жидкостей;

    – количество вещества, разлившегося из разгерметизированной емкости (хранилища);

    8,5 – эмпирический коэффициент, который позволяет учесть различные условия возникновения взрыва (характеристики ГВС, состояние атмосферы, форму облака, мощность источника воспламенения, место его инициирования и др.).

    За пределами зоны детонации избыточное давление ударной волны (ΔР ф) резко снижается до атмосферного. В литературных источниках предлагаются те или иные зависимости для расчета максимальных значений ΔР ф в зоне детонации с учетом расстояния до места взрыва, например во второй методике, приведенной ниже.

    В этой же методике для расчетов используются обобщенные данные изменения избыточного давления (ΔР ф) исходя из расстояния, выраженного в долях от радиуса зоны детонации (r 1 /r 0) и максимального давления (P max) в зоне детонации (табл. 2) . При этом P max для различных ГВС находится по табл.2 из справочников .

    Зону распространения (действия) УВ обычно разбивают на несколько (n) зон с радиусами:

    · смертельных поражений или полных разрушений (R 100) с избыточным давлением на внешней границе ΔР ф =100 кПа (ΔР ф > 50 кПа);

    · сильных и полных разрушений соответственно с ΔР ф =30 кПа и ΔР ф =50 кПа (R 50);

    · средних с ΔР ф =20 кПа

    · слабых с ΔР ф =10 кПа (R 20)

    · безопасную зону с ΔР ф < <10 кПа, т.е. ΔР ф =6 -7 кПа (R 6, 7). * По международным нормам безопасным

    · для человека является Δ Р ф =7 кПа .

    Затем, определив P max (табл. 2) для данной ГВС, вытекшей при аварии из емкости (хранилища), по табл. 3 при принятых зонах с ΔР ф1 =100 кПа, ΔР ф2 =50 кПа, ΔР ф3 =20 кПа, R 6 , 7 =7кПа находим отношения r 1 /r 0 и, следовательно, радиусы (R n) принятых зон, зная r 0 из (2.5)


    и R n =c n ·r 0 (2.7),

    где n – показатель той или иной принятой зоны; c x = определяется по табл.3.

    По аналогии с характеристиками зон разрушений при воздействии воздушной УВ ядерных взрывов определяют размеры опасных зон, в которых возникнут сильные, возможные (слабые) разрушения жилых и промышленных зданий в районах взрыва газо- и паровоздушных смесей углеводородных газов и жидкостей . Следует сказать, что учитывая импульсный характер воздействия нагрузок от УВ, избыточное давление при взрыве ГВС, вызывающее сильные разрушения, будет примерно в 1,5-1,7 раза больше, чем при ядерном взрыве, т.е примерно ΔР ф ГВС ср ~50 кПа, а возможные слабые разрушения – ΔР ф ГВС сл =20 кПа .

    Тогда радиусы зоны сильных (R c) и слабых (R сл) разрушений:

    R сл = R 20 = r 0 ·с 20 ,

    R c = R 50 = r 0 · с 50

    Отношения R 50 /r 0 и R 20 /r 0 могут быть определены как по табл.3, так и по табл.4 . В табл. 4 приведены значения радиусов зон сильных (R c = R 50) и слабых (R cл = R 20) разрушений для массы разлившейся ГВС из разгерметизированной емкости (Q) – Q=1-10000 т и максимальных значений давлений P max =500-2000 кПа .

    Таблица 2

    Физико-химические и взрывоопасные свойства некоторых веществ и их ГВС


    Таблица 15 - Результаты расчета зон поражения (для человека)

    Характеристика зоны поражения

    Вероятность поражения

    человека, Рпор


    Глубина зоны, м

    Зона безопасности

    Рпор

    >144

    Зона возможного слабого поражения

    0,01

    144

    Зона возможного среднего поражения

    0,33

    66

    Зона возможного сильного поражения

    0,5

    55

    Зона безусловного поражения

    Рпор>0,99

    21

    Таблица 16 - Результаты расчета зон повреждения зданий

    Выводы: , что при авариях с утечкой ЛВЖ на автомобильном транспорте количество бензина, участвующего в аварии составит от 5 д о 20 тонн . Площадь зоны разлива нефтепродуктов составит от 120 до 540 м 2 . Радиус зон составляет: безопасного удаления - от 58 до 144 м ; сильных разрушений - до 89 м ; полных разрушений - от 8 до 13 м . Расстояние от границы жилой зоны до места аварии – от 25 до 100 м . При этом возможное количество погибших может составить от 1 до 10 до 50 человека. Ущерб - до 5 млн. рублей.

    в) аварии при перевозке СУГ.

    Поражающие факторы:

    1. Воздушная ударная волна, образующаяся в результате взрывных превращений топливо-воздушной смеси (ТВС) при разливе топлива в открытом пространстве;

    2. Тепловое излучение горящих разлитий.

    Исходные данные для расчета последствий ЧС:

    1. Предполагается, что во взрыве облака ТВС принимает участие масса СУГ АЦ (15 м 3), заполненного на 80 % .

    3. Плотность СУГ - 530 кг/м 3 .

    4. Разгерметизация резервуара происходит мгновенно.

    Таблица 17 - Результаты расчетов радиусов зон поражения людей

    Таблица 18 - Результаты расчетов радиусов зон разрушения зданий


    Избыточное давление, ∆Р (кПа)

    Степень разрушения

    Радиус зоны разрушения,

    100

    Полное разрушение

    49,6

    53

    50 % разрушение

    70,0

    28

    Среднее разрушение

    100,0

    12

    Умеренное разрушение

    176,4

    3

    Малые повреждения

    (Разбита часть остекления)


    538,8

    Выводы: В результате приведенных расчетов видно, что при авариях с утечкой СУГ на транспорте его количество, участвующего в аварии составит от 5 д о 20 тонн . Радиус зон составляет: безопасного удаления - до 540 м ; сильных разрушений - до 70 м ; полных разрушений - до 50 м . Расстояние от границы жилой зоны до места аварии при перевозке автомобильным транспортом – от 25 до 100 м.

    При этом возможное количество погибших может составить от 1 до 10 человек, количество пострадавших - до 50 человека. Ущерб - до 5 млн. рублей.

    2.2.5. Анализ возможных последствий аварий на газовом хозяйстве

    Меловатского сельского поселения
    По территории Меловатского сельского поселения проходят газопроводы высокого, среднего и низкого давления диаметром от 100 до 325 мм с давлением Р от 0,0 3 до 55 кгс/см 2 . Кроме того, на расстоянии 5-ти км южнее окраины с. Новомеловатка проходит трасса магистрального газопровода «Средняя Азия – Центр ІІІ», три нитки диаметром 1,22 м и давлением 55 кгс/см 2 (5,5 МПа), производительностью 40 млн. м 3 в сутки, заглубление – 0,8 м. Разрушения, повреждения газопровода могут быть в результате технических дефектов, а также внешних механических воздействий (строительная деятельность, повреждения транспортом, террористические акты, военные действия).

    При аварийном повреждении подземного газопровода образуется локальная зона загазованности непосредственно в месте разгерметизации. При этом не создаются условия для самозажигания струи газа. Возгорание возможно лишь в случае попадания в зону утечки источника инициирования зажигания.

    При образовании воронки выброса газа и при наличии источника инициирования возгорания (воспламенения) газа в начальный момент времени возникает факельное горение метана. При отсутствии в начальный момент времени источника зажигания будет формироваться газовоздушное облако. При отсутствии ветра газовоздушное облако всплывает вверх и рассеивается. Однако может возникнуть вероятность взрыва при наличии источника воспламенения. Так как метан легче воздуха и газовоздушное облако обладает плавучестью, то при наличии ветра происходит его дрейф и облако может рассеяться.
    В качестве поражающих факторов в разделе ИТМ рассматривается:

    Воздушная ударная волна, образующаяся в результате взрывных превращений ГВС;

    В качестве показателей последствий взрывных явлений и пожара приняты:

    1. Степень поражения людей (смертельное поражение, тяжелые, средние, легкие травмы

    порог поражения);

    2. Степень разрушения окружающей застройки (полное, 50% разрушение, умеренное разрушение, малые повреждения, повреждение остекления);

    3. Воздействие тепловых потоков на здания и сооружения оценивается возможностью воспламенения горючих материалов.

    Основными Аварийными ситуациями на газовом хозяйстве Меловатского сельского поселения являются:

    А-1 - разрушение (разгерметизация) газопровода (ГРП, ШРП);

    А-2 - разрушение (разгерметизации) технологического оборудования котельных.
    Оценка количества опасного вещества, участвующего в авариях

    на объектах газового хозяйства:
    Исходные данные:
    Длина максимальных участков газопроводов:

    Для газопроводов высокого давления (магистрального и внутрипоселковых сетей) – 0,5 км;

    Для газопроводов среднего и низкого давления – 0,1 км;
    Диаметры газопроводов (внутренние):

    Газопроводов высокого давления – 1200 и 325 мм;

    Газопроводов среднего и низкого давления (внутриквартальных и внутрипоселковых сетей) – 100 мм (максимальный);
    Рабочее максимальное давление в трубопроводе:

    Магистрального газопровода – 5,5 МПа;

    Газопроводов высокого давления – 0,6 МПа;

    Газопроводов среднего давления (внутриквартальных и внутрипоселковых сетей) – 0,3 МПа;

    Газопроводов низкого давления (внутриквартальных и внутрипоселковых сетей) – 0,03 МПа;
    Максимальный объём перекачки газа:

    Магистрального газопровода высокого давления – q = 40 млн. м 3 / сутки (1,67 млн. м З /час (463 м З /с)) – по трём веткам; по одной q = 13,3 млн. м 3 / сутки (0,56 млн. м З /час (154 м З /с))

    Газопроводов высокого давления (внутрипоселковых сетей) – q = 1100 м 3 / сутки (0,31 м З /с));

    Газопроводов низкого давления (внутриквартальных и внутрипоселковых сетей) – q = 100 м 3 / сутки (0,031 м З /с).
    Результаты расчётов:
    Для газопроводов высокого давления:
    диаметром 1,22 м:

    V 1m = q*T = 154*120 = 18520 м З.

    V 2m = 0,01π*5500*0,6 2 *500 = 31086 м З.

    М = (18520 + 31086)*0,68 = 49606*0,68 = 33732 кг 3373,2 кг ).
    диаметром 0,325 м:

    V 2m = 0,01π*600*0,16 2 *100 = 48,2 м З.

    Масса газа, поступившего в окружающую среду, таким образом, составляет:

    М = (37,2 + 48,2)*0,68 = 85,4*0,68 = 58 кг . Однако, при взрывах ТВС на открытом пространстве в создании поражающих факторов ЧС участвует 10% (5,8 кг ).
    Для газопроводов среднего давления:

    диаметром 0,1 м:

    V 1m = q*T = 0,31*120 = 37,2 м З.

    V 2m = 0,01π*300*0,05 2 *100 = 2,36 м З.

    Масса газа, поступившего в окружающую среду, таким образом, составляет:

    М = (37,2 + 2,36)*0,68 = 39,56*0,68 = 26,9 кг . Однако, при взрывах ТВС на открытом пространстве в создании поражающих факторов ЧС участвует 10% (2,7 кг ).
    Для газопроводов низкого давления:

    диаметром 0,1 м:

    V 1m = q*T = 0,031*120 = 3,72 м З.

    V 2m = 0,01π*30*0,05 2 *100 = 0,28 м З.

    Масса газа, поступившего в окружающую среду, таким образом, составляет:

    М = (3,72 + 0,28)*0,68 = 4*0,68 = 2,7 кг . Однако, при взрывах ТВС на открытом пространстве в создании поражающих факторов ЧС участвует 10% (0,27 кг ).

    Указанным количеством при расчёте зон поражения можно пренебречь. Зоны поражения не выйдут за охранно-защитную зону (2 м влево и вправо от оси газопровода).
    при разрушении (разгерметизации) технологического оборудования котельной

    Максимальная масса природного газа, участвующего в аварии при разрушении технологического оборудования котельной, в первую очередь зависит от объёма помещений котельных (таблица 19). Всего на территории поселения 2 котельных.
    Таблица 19 - Характеристика котельных:

    Для того, чтобы произошёл взрыв ТВС, необходимо, чтобы из-за неисправности оборудования утечка газа составила от 5 до 15 %. Следовательно, объём утечки должен составлять:

    При 5%: 120 м 3 х 0,05 = 6 м 3 (при плотности газа 0,68 кг· м 3 – 4 кг)

    При 15%: 120 м 3 х 0,15 = 18 м 3 (при плотности газа 0,68 кг· м 3 – 12 кг)

    Максимальная масса газа, поступившего в помещение котельной, может составить 12 кг.
    Количество опасного вещества, участвующего в реализации опасных сценариев ЧС приведено в таблице № 20:
    Таблица № 20: - Количество опасного вещества участвующего в авариях:


    п/п


    Название аварийной ситуации.

    Объём

    природного газа

    (м 3)


    Количество опасного вещества

    (кг)


    Аварии на объектах газового хозяйства (А-1):

    1.

    Разрушение (разгерметизация) магистрального газопровода в/д диаметром 1,22 м

    33732

    33732 кг

    (33,732 т.)


    2.

    Разрушение (разгерметизация) газопровода в/д диаметром 0,325 м

    85,4

    58 кг

    (0,058 т.)


    3.

    Разрушение (разгерметизация) газопровода с/д диаметром 0,1 м

    40

    27 кг

    (0,027 т.)


    4.

    Разрушение (разгерметизация) газопровода н/д диаметром 0,1 м

    4

    2,7 кг

    (0,0027 т.)


    Аварии на объектах котельного хозяйства (А-2):

    7

    Разрушение (разгерметизация) технологического оборудования котельной.

    Природный газ

    12

    Расчет вероятных зон действия поражающих факторов

    при разрушении (разгерметизации) газопроводов (А-1)
    Аварии при разгерметизации газопроводов сопровождаются следующими процессами и событиями: истечением газа до срабатывания отсекающей арматуры (импульсом на закрытие арматуры является снижение давления продукта); закрытие отсекающей арматуры; истечение газа из участка трубопровода, отсеченного арматурой.

    В местах повреждения происходит истечение газа под высоким давлением в окружающую среду. На месте разрушения в грунте образуется воронка. Метан поднимается в атмосферу (он легче воздуха), а другие газы или их смеси оседают в приземном слое. Смешиваясь с воздухом газы образуют облако взрывоопасной смеси. Статистика показывает, что примерно 80 % аварий сопровождается пожаром. Искры возникают в результате взаимодействия частиц газа с металлом и твердыми частицами грунта. Обычное горение может трансформироваться во взрыв за счет самоускорения пламени при его распространении по рельефу и в лесу.

    При оперативном прогнозировании принимают, что процесс горения при этом развивается в детонационном режиме. Раскрытая схема к определению давлений при аварии на газопроводе приведена на рисунке 1.

    Рисунок 1 - Расчетная схема к определению давлений при аварии на газопроводе

    Р – давление в зоне детонации; Р ф - давление во фронте воздушной ударной волны; r 0 - радиус зоны детонации; R - расстояние от расчетного центра взрыва; 1 - зона детонации; 2 - зона воздушной ударной волны (R>r 0)

    Дальность распространения облака (см. рис1) взрывоопасной смеси в направлении ветра определяется по эмпирической формуле

    L = 25
    , м, (3.49)
    где М - массовый секундный расход газа, кг/с;

    25 - коэффициент пропорциональности, имеющий размерность м 3/2 /кг 1/2 ;

    W – скорость ветра, м/с.

    Тогда граница зоны детонации, ограниченная радиусом r 0 , в результате истечения газа за счет нарушения герметичности газопровода, может быть определена по формуле

    r 0 = 12,5, м. (3.50)

    Массовый секундный расход газа М из газопровода для критического режима истечения, когда основные его параметры (расход и скорость истечения) зависят только от параметров разгерметизированного трубопровода, может быть определен по формуле

    М =
    , кг/с, (3.51)

    где - коэффициент, учитывающий расход газа от состояния потока (для звуковой скорости истечения =0,7); F - площадь отверстия истечения, принимаемая равной площади сечения трубопровода, м 2 ; - коэффициент расхода, учитывает форму отверстия ( = 0,7- 0,9), в расчетах принимается  = 0,8; Р г - давление газа в газопроводе, Па; V г - удельный объем транспортируемого газа при параметрах в газопроводе (определяется по формуле 3.52).

    V г = R 0
    , м 3 / кг, (3.52)
    где Т - температура транспортируемого газа, К;

    R 0 - удельная газовая постоянная, определяемая по данным долевого состава газа q к и молярным массам компонентов смеси из соотношения

    R 0 = 8314
    , Дж / (кгК), (3.53)

    где 8314 - универсальная газовая постоянная, Дж / (кмольК);

    m к - молярная масса компонентов, кг/кмоль;

    n - число компонентов.
    В зоне действия детонационной волны давление принимается равным 1,7 МПа. Давление во фронте ВУВ на различном расстоянии от газопровода определяется также с использованием данных таблицы 21.
    Таблица 21 - Давление во фронте ударной волны в зависимости от расстояния до шнура взрыва .


    r/r 0

    0 - 1

    1,01

    1,04

    1,08

    1,2

    1,4

    1,8

    2,7

    Р ф,кПа

    1700

    1232

    814

    568

    400

    300

    200

    100

    r/r 0

    3

    4

    5

    6

    8

    12

    20

    -

    Р ф,кПа

    80

    50

    40

    30

    20

    10

    5

    -

    При прогнозировании последствий случившейся аварии на газопроводе зону детонации и зону действия ВУВ принимают с учетом направления ветра. При этом считают, что граница зоны детонации распространяется от трубопровода по направлению ветра на расстояние 2r 0 . В случае заблаговременного прогнозирования, зона детонации определяется в виде полос вдоль всего трубопровода шириной 2r 0 , расположенных с каждой из его сторон. Это связано с тем, что облако взрывоопасной смеси может распространяться в любую сторону от трубопровода, в зависимости от направления ветра. За пределами зоны детонации по обе стороны от трубопровода находятся зоны действия ВУВ. На плане местности эти зоны также имеют вид полосовых участков вдоль трубопровода.
    При разработке разделов проекта ИТМ ГОЧС на планах местности вдоль магистральных нефте- и газопроводов наносятся зоны возможных сильных разрушений, границы которых определяются величиной избыточного давления 50 кПа.
    При проведении оперативных расчетов следует учитывать, что в зависимости от класса магистрального трубопровода, рабочее давление газа Р г может составлять: для газопроводов высокого давления - 0,6 – 7.5 МПа; среднего давления - от 0,3 до 0,6 МПа; низкого давления - до 0,3 МПа. Диаметр газопровода может быть от 100 до 1200 мм. Температура транспортируемого газа может быть принята в расчетах t 0 = 40 0 С. Состав обычного газа, при отсутствии данных, может быть принят в соотношении: метан (СН 4) - 90 %; этан (С 2 Н 6) - 4 %; пропан (С 3 Н 8) - 2 %; Н-бутан (С 4 Н 10) - 2 %; изопентан - (С 5 Н 12) - 2 %.

    Расчет

    радиусов зоны детонации r 0 при взрыве участков газопроводов
    Исходные данные :
    d = 1,2 м; Р г = 5,5 МПа; t = 40 0 С; W = 1 м/с; =0,8.
    Расчет:

    1. R 0 =8314,4
    =8314,4(
    ) = 486 КДж/(кг*К).

    2. V г = R 0
    = 254 м 3 /кг.

    3. М = = 147,15 кг/с.

    4. r 0 = 12,5 = 152 м.

    Отсюда зона детонации будет равна: 2r 0 = 304 м (с каждой стороны трассы газопровода).
    Используя таблицу 21 получаем радиус зоны возможных сильных разрушений, границы которой определяются величиной избыточного давления 50 кПа:
    r = 4r 0 =608 м
    Аналогичные расчёты выполнены и для других участков газопроводов. Полученные данные сведены в таблицу 22:


    Таблица 22 - Радиусы зон поражения при воздействии избыточного давления

    Степень поражения

    Избыточное давление,

    (∆Р кПа)


    Радиус зоны, м для газопроводов

    м/г 1,42 м

    в/д 0,325 м

    с/д 0,1 м

    н/д 0,1 м

    Радиус зоны детонации r 0

    1700

    152

    9,5

    5

    2,7

    Разрушение зданий:

    Полное разрушение зданий

    100

    410

    25,7

    13,5

    7,3

    50 %-ное разрушение зданий

    53

    608

    38

    20

    11

    Средние повреждения зданий

    28

    912

    57

    30

    16,2

    Умеренные повреждения зданий

    12

    1520

    95

    50

    27

    Малые повреждения (разбита часть остекления

    3

    3500

    285

    150

    75

    Поражения людей:

    Крайне тяжелые

    100

    410

    25,7

    13,5

    7,3

    Тяжелые травмы

    60

    550

    28,5

    15

    9

    Средние травмы

    40

    760

    47,5

    25

    13,5

    Легкие травмы

    20

    1216

    76

    40

    22

    Пороговые поражения

    5

    3040

    190

    100

    54

    Расчет вероятных зон действия поражающих факторов при разрушении (разгерметизации) технологического оборудования котельных (А-2)
    В результате разрушения газопроводов и технологического оборудования с горючими веществами возможен их выброс внутрь здания или на открытую площадку с образованием газопаровоздушной смеси (ГПВС). Серьезную опасность для персонала, и технологического оборудования представляет взрыв образовавшейся ГПВС.

    Процесс горения со стремительным высвобождением энергии и образованием при этом избыточного давления (более 5 кПа) называется взрывным горением.
    Различают два принципиально разных режима взрывного горения: дефлаграционный и детонационный.
    При дефлаграционном горении распространение пламени происходит в слабо возмущенной среде со скоростями значительно ниже скорости звука, давление при этом возрастает незначительно.

    При детонационном горении (детонации) распространение пламени происходит со скоростью, близкой к скорости звука или превышающей ее.

    Инициирование (зажигание) газовоздушной смеси с образованием очага горения возможно при наличии источника зажигания.

    К основным факторам, влияющим на параметры взрыва, относят: массу и тип взрывоопасного вещества, его параметры и условия хранения или использования в технологическом процессе, место возникновения взрыва, объемно-планировочные решения сооружений в месте взрыва.
    Взрывы на котельной можно разделить на две группы - в открытом пространстве и производственном помещении.

    Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении может превысить 5 кПа. В этом случае газо-, паро-, пылевоздушная смесь займет частично или полностью весь объем помещения.
    Котельная:
    Сценарий С-1 : (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, ликвидация горения).

    Масса природного газа, который может поступить в котельную – 12 кг.

    Природный газ не токсичен. Однако из-за того, что газ не пригоден для дыхания, то он может представлять опасность для персонала внутри помещения котельной. Необходимо соблюдать правила пожарной безопасности, не пользоваться открытым огнём и использовать средства индивидуальной защиты (изолирующий противогаз). При этом от удушья может погибнуть 1 человек из числа персонала котельной.

    Сценарий С-2 (Разгерметизация технологического оборудования, утечка газа, воспламенение на месте выброса, горение).

    Исходные данные:

    Частота реализации сценария год -1: 4*10 -5

    Наименование вещества: природный газ

    Масса вещества, кг: 12

    Рассматриваемые сценарии:

    Пожар утечки.
    Результаты расчета:
    (поражающие факторы пожара не выйдут за пределы котельной)
    Сценарий С-3 (Разгерметизация оборудования, утечка газа, воспламенения на месте выброса нет, образование облака ТВС, источник зажигания, взрыв ТВС с ударной волной).