Охрана труда. Статическое и атмосферное электричество. Обеспечение безопасности при эксплуатации электроустановок и защита от неблагоприятного действия электричества атмосферное электричество и меры зашиты от прямого воздействия и вторичного проявления За


Статическое электричество и средства защиты от него

Статическое электричество возникает при трении восходящих тепловых слоев воздуха, трении воздушных масс.

Другой источник электризации атмосферы -- в космосе, за пределами однородной атмосферы. Потоки ультрафиолетового и мягкого рентгеновского излучений от Солнца направляются к Земле. Они не равнозначны по плотности, интенсивности и энергии. Достигая, верхних слоев атмосферы, ультрафиолетовое и рентгеновское излучения ионизируют атомы и молекулы атмосферы, превращая их из нейтральных в электрически заряженные. Кроме того, возникает множество иных заряженных элементарных частиц, обладающих различными энергиями. Плотность этих частиц и число их в единице объема различны.

На некотором расстоянии от Земли образуется сплошной объемный ионизированный слой, охватывающий Землю. Первый такой ионизированный стабильный слой охватывает Землю на высоте 110-120 км, он имеет относительно небольшую толщину и стабильные границы. Второй слой с переменной толщиной находится на высоте 180-300 км. Кроме этих постоянных электрически заряженных слоев имеются "плавающие", локально образующиеся области заряженных частиц. Ими то, в основном, и можно объяснить резко изменяющиеся значения поля в различных районах земного шара.

Магнитное поле окружающей человека среды складывается, в основном, из двух составляющих:

  • * магнитного поля Земли
  • * магнитных полей, создаваемых электрифицированным транспортом, работающими электродвигателями и генераторами, линиями электропередачи и т.д.

Именно созданная человеком электротехника чаще всего и оказывает вредное воздействие. По мере удаления от источника электромагнитное поле ослабевает. Поэтому одним из способов защиты является удаленное расположение источников сильных электромагнитных волн.

Другим способом защиты является снижение электромагнитного излучения самого источника путем совершенствования конструкции.

Но, пожалуй, самым распространенным на сегодняшний день способом защиты от действия электромагнитных полей является экранирование. Принцип его состоит в том, что объект защиты окружают со стороны действия электромагнитного поля материалом, который полностью или частично поглощает электромагнитные волны. Различные материалы по-разному препятствуют проникновению электромагнитных волн.

Бывает, что, наоборот, экранируют источник электромагнитных полей. Что именно экранировать определяется количеством и размерами источников электромагнитных полей и объектов защиты. Так, например, проще экранировать автомобильный радиоприемник, нежели сам автомобиль, и, напротив -- проще экранировать блок питания компьютера, нежели каждый каскад, подверженный влиянию электромагнитных полей, излучаемых блоком питания.

Лучше всего использовать для экранирования свинец или алюминий, так как они сильнее остальных поглощают электромагнитные поля.

Для защиты от статического электричества в помещениях два раза в день проводят влажную уборку и проветривание. При этом накопившиеся заряды выветриваются вместе с водяными парами. Однако в помещениях, где находятся проводники с высоким напряжением коэфициент влажности не должен превышать определенного значения, так как при нарушении изоляции проводников, находящегося поблизости человека может поразить электрическим током.

Статическое электричество может накапливаться не только на предметах, но и на самом человеке, особенно на одежде и волосяном покрове. Оно наносит вред функционированию нервной системы, всячески раздражает.

После принятия душа человек ощущает себя заметно легче. Частично это объясняется тем, что статическое электричество, накопившееся на теле за весь день, смывается водой.

Атмосферное электричество и средства защиты от него

Не только во время грозы в атмосфере существует электричество. Оно, вообще, присуще атмосфере и характеризует ее состояние. В начале XIX века экспериментально было обнаружено, что идеально изолированный от Земли заряженный проводник постепенно теряет свой заряд. Был установлен и закон потери заряда во времени. Позже это явление было объяснено. Оказывается, в окружающем нас воздухе есть зарядоносители -- заряженные ионы. Они-то и являются причиной того, что идеально изолированный от Земли заряженный проводник теряет свой заряд.

Зарядоносителями - ионами могут быть заряженные остатки атомов и молекул, которые делятся на легкие, средние и тяжелые ионы. Это микрочастицы водяного тумана, дождевые капли, мелкодисперсная пыль, микроорганизмы. В окружающей человека среде зарядоносители непрерывно передвигаются по всем направлениям. Наблюдение, проведенные у земной поверхности с помощью вольтметра с большим внутренним сопротивлением, показали, что градиент потенциала находится в пределах 120-150 В/м.

В результате экспериментальных наблюдений была установлена плотность электрических зарядов на поверхности Земли, равная 7*105 элементарных зарядов. Зная площадь поверхности Земли, несложно определить общий заряд Земли -- он равен 5*107 Кл. Количество электричества на поверхности Земли непрерывно меняется. Электрические заряды перемещаются с поверхности Земли в верхние слои атмосферы и наоборот -- из верхних слоев атмосферы стремятся к ее поверхности. Если перемещение электрических зарядов оценить значением тока, то этот ток составит в среднем 1500 А. Электрический ток, равный 1500 А, постоянно циркулирует между верхними слоями атмосферы и поверхностью нашей планеты. Поверхность Земли обладает отрицательным зарядом.

Токи проводимости, создаваемые ионами разной природы и разного знака, в целом движутся к Земле, неся положительный заряд. То же можно сказать и о макрозаряженных частицах, выпадающих в виде осадков -- дождя, снега.

Поверхность Земли неоднородна. Резко выраженную ее неоднородность создает человек, строя различные здания, заводские трубы и т.д. Во время грозы, а иногда и задолго до ее развития, когда напряженность электрического поля в атмосфере становится особенно большой (при бурях, снежных метелях, сильных ветрах), и происходят большие перемещения воздушных масс, можно видеть светящиеся заряды, возникающие на остриях, острых углах и иных предметах, возвышающихся над Землей. Эти разряды известны под названием огней Эльма. Чаще всего светящиеся разряды возникают в горах на острых выступах скал, вершинах деревьев, верхушках опор линий электропередачи. В низменных местах они замечены на молниеотводах, выступах зданий, мачтах кораблей, антеннах. В исключительных случаях светящиеся разряды наблюдаются и на животных, и на вытянутой руке человека. Их появление сопровождается потрескиванием продолжительностью от нескольких секунд до часов.

Подобные явления представляют собой различные формы коронного разряда, который образуется около светящегося предмета в виде своеобразной короны. Возникновение их обусловлено резким увеличением напряженности электрического поля, в 1000 раз превышающим средние значения 120-1250 В/м. Высокая напряженность поля уже при нормальном давлении вызывает ионизацию, сопровождающуюся появлением электронов. Электроны появляются вследствие вторичной ионизации, вызываемой ионами, находящимися в воздухе вблизи острия и разгоняемыми электрическим полем.

Значительную опасность представляет атмосферное статическое электричество; в грозовых облаках накапливаетсянапряжение от 100 млн до 1млрд В (разность потенциалов между поверхностью земли и атмосферой при грозе), температура в молнии достигает значений 20 - 30 тыс °С , скорость молнии – порядка 100 000 км/с , а сила тока в ней – 180 000 А. Ежегодно на земном шаре бывает до 44 000 гроз, т.е. каждую секунду на небосклоне около 100 молний. В среднем на 1 км 2 поверзности земли приходится в год 2-4 грозовых разряда.

Грозовые разряды, поражающие наземные объекты проявляются в виде:

а) прямого удара молнии (непосредственный контакт молнии с объектом, сопровождающийся протеканием через него тока молнии)

б) вторичных проявлений молнии – электрической индукции (наведение потенциалов на наземных предметах в результате изменений электрического поля грозового облака, что сопряжено с опасностью появления искрения между металлическими элементами конструкций и оборудования) и электормагнитной индукции (наведение потенциалов в незамкнутых металлических контурах в результате быстрых изменений тока молнии, создающее опасность искрения в местах сближения этих контуров)

в) заноса высоких потенуиалов (перенесение наведенных молнией высоких электрических потенциалов в защищаемое здание по трубопроводам, электрическим кабелям и другим металлоконструкциям).

Эффективным средством защиты от атмосферного электричества является молниезащита. Комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от взрывов, загораний и разрушений выполнятся по «Инструкци по устройству молниезащиты зданий и сооружений и промышленных коммуникаций» СО 153-34 И.122-2003.

Молниезащита бывает трех категорий , что определяется назначением зданий, среднегодовой продолжительностью гроз, ожидаемым числом поражений зданий в год.

II категория – защита промышленных зданий и сооружений с взрывоопасными зонами классов B-Iа, B-Iб, B-IIа и расположенных в местности со средней грозовой деятельностью 10 и более час в год. По этой же категории обеспечивается защита наружных технологических установок и открытых складов, относимых к классу B-Iг, вне зависимости от места расположения.

III категория – защита многих других производственных сельскохозяйственных, жилых и общественных зданий, сооружений, складов, дымовых труб, водонапорных, силосных башен, пожарных вышек, ТВ вышек с учетом их пожароопасности, степени огнестойкости, ожидаемого количества поражений молнией, времени средней грозовой активности в районе и других факторов.

Любой молниеотвод состоит из: опоры, молниеприемника, токоотвода (спуска) и заземлителя. Применяются2 типа молниеотводов: стержневой и тросовый. Стержневой по конструктивному исполнению бывает одиночный, двойной, многократный. Тросовый бывает одиночный и двойной.

ФИЗИЧЕСКАЯ ПРИРОДА И ОПАСНЫЕ ФАКТОРЫ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Атмосферное электричество образуется и концентрируется в облаках - образованиях из мелких водяных частиц, находящихся в жидком и твердом состоянии.

Площадь океанов и морей составляет 71 % поверхности земного шара. Каждый 1 см 2 поверхности Земли в течение года в среднем получает 460 кДж солнечной энергии. Подсчитано, что из этого количества 93 кДж/(см*год) расходуется на испарение воды с поверхности водных бассейнов. Поднимаясь вверх, водяные пары охлаждаются и конденсируются в мельчайшую водяную пыль, что сопровождается выделением теплоты парообразования (2260 кДж/л). Образовавшийся избыток внутренней энергии частично расходуется на эмиссию частиц с поверхности мельчайших водяных капелек. Для от

деления от молекулы воды протона (Н) требуется 5,1 эВ, для отделения электрона -12,6 эВ, а для отделения молекулы от кристалла льда достаточно 0,6 эВ, поэтому основными эмитируемыми частицами являются молекулы воды и протоны. Количество эмитируемых протонов пропорционально массе частиц. Результирующий поток протонов всегда направлен от более крупных капелек к мелким. Соответственно более крупные капельки приобретают отрицательный заряд, а мелкие - положительный. Чистая вода - хороший диэлектрик и заряды на поверхности капелек сохраняются длительное время. Более крупные тяжелые отрицательно заряженные капельки образуют нижний отрицательно заряженный слой облака. Мелкие легкие капельки объединяются в верхний положительно заряженный слой облака. Электростатическое притяжение разноименно заряженных слоев поддерживает сохранность облака как целого.

Эмиссия протонов возникает дополнительно при кристаллизации водяных частиц (превращении их в снежинки, градинки), так как при этом выделяется теплота плавления, равная 335 кДж/л. При соударениях капелек, снежинок, градинок работа ветра в конечном счете приводит к эмиссии протонов, к изменению величины заряда частиц. Следовательно, атмосферное электричество (АтЭ) и статическое электричество (СтЭ) имеют одинаковую физическую природу. Различаются они масштабом образования зарядов и знаком эмитируемых частиц (электроны или протоны).

О единстве природы АтЭ и СтЭ свидетельствуют опытные данные. Сухой снег представляет собой типичное сыпучее тело; при трении снежинок друг о друга и их ударах о землю и о местные предметы снег должен электризоваться, что и происходит в действительности. Наблюдения на Крайнем Севере и в Сибири показывают, что при низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, в облаках снежной пыли бывают виднысиние и фиолетовые вспышки, наблюдается свечение остроконечных предметов, образуются шаровые молнии. Очень;ильные метели иногда заряжают телеграфные провода так сильно, что подк:лючаемые к ним электролампочки светятся полным накалом. Те же явления наблюдаются во время сильных пыльных (песчанных) бурь.

Наличие множества взаимодействующих факторов дает сложную картину распределения зарядов АтЭ в облаках и их частях. По экспериментальным данным нижняя часть облаков чаще всего имеет отрицательный заряд, а верхняя - положительный, но может иметь место и противоположная полярность частей облака. Облака могут также нести преимущественно заряд одного знака.

Заряд облака (части облака) образуют мельчайшие одноименно заряженные частицы воды (в жидком и твердом состоянии), размещенные в объеме нескольких км 3 .

Электрический потенциал грозового облака составляет десятки миллионов вольт, но может достигать 1 млрд. В. Однако общий заряд облака равен нескольким кулонам.

Основной формой релаксации зарядов АтЭ является молния- электрический разряд между облаком и землей или между облаками (частями облаков). Диаметр канала молнии равен примерно 1 см, ток в канале молнии составляет десятки килоампер, но может достигать 100 кА, температура в канале молнии равна примерно 25 000°С, продолжительность разряда составляет доли секунды.

Молния является мощным поражающим опасным фактором. Прямой удар молнии приводит к механическим разрушениям зданий, сооружений, скал, деревьев, вызывает пожары и взрывы, является прямой или косвенной причиной гибели людей. Механические разрушения вызываются мгновенным превращением воды и вещества в пар высокого давления на путях протекания тока молнии в названных объектах. Прямой удар молнии называют первичным воздействием атмосферного электричества.

К вторичному воздействию АтЭ относят: электростатическую и электромагнитную индукции; занос высоких потенциалов в здания и сооружения.

Рассмотрим опасные факторы вторичного воздействия АтЭ. Образовавшийся электростатический заряд облака наводит (индукцирует) заряд противоположного знака на предметах, изолированных от земли (оборудование внутри и вне зданий, металлические крыши зданий, провода ЛЭП, радиосети и т. п.). Эти заряды сохраняются и после удара молнии. Они релаксируют обычно путем электрического разряда на ближайшие заземленные предметы, что может вызвать электротравматизм людей, воспламенение горючих смесей и взрывы. В этом заключается опасность электростатической индукции.

Явление электромагнитной индукции заключается в следующем. В канале молнии протекает очень мощный и быстро изменяющийся во времени ток. Он создает мощное переменное во времени магнитное поле. Такое поле индуцирует в металлических контурах электродвижущую силу разной величины. В местах сближения контуров между ними могут происходить электрические разряды, способные воспламенить горючие смеси и вызвать электротравматизм.

Занос высоких потенциалов в здание происходит в результате прямого удара молнии в металлокоммуникации, расположенные на уровне земли или над ней вне зданий, но входящие внутрь зданий. Здесь под металлокоммуникациями понимают рельсовые пути, водопроводы, газопроводы, провода ЛЭП и т. п. Занесение высоких потенциалов внутрь здания сопровождается электрическими разрядами на заземленное оборудование, что может привести к воспламенению горючих смесей и электротравматизму людей.

ЗАЩИТА ОТ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

Степень взрывопожароопасности объектов оценивается по классификации Правил устройства электроустановок (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305- 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б - не менее 95 %.

По I категории организуется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1 и В-П (см. гл. 20). Зона защиты для всех объектов (независимо от места расположения объекта на территории СССР и от интенсивности грозовой деятельности в месте расположения) применяется только типа А.

По II категории осуществляется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1а, В-16 и В-Па. Тип зоны защиты при расположении объектов в местностях со средней грозовой деятельностью 10 ч и более в год определяется по расчетному количеству N поражений объекта молнией в течение года:

при N<=1 достаточна зона защиты типа Б; при N> 1 должна обеспечиваться зона защиты типа А. Порядок расчета величины N показан в нижеприведенном примере. Для наружных технологических установок и открытых складов, относимых по ПУЭ к зонам класса В-1г, на всей территории СССР (без расчета N) принимается зона защиты типа Б.

По III категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-1, П-2 и П-2а. При расположении объектов в местностях со средней грозовой деятельностью 20 ч и более в год и при N> 2 должна обеспечиваться зона защиты типа А, в остальных случаях - типа Б. По III категории осуществляется также молниезащита общественных и жилых зданий,башен, вышек, труб, предприятий, зданий и сооружений сельскохозяйственного назначения. Тип зоны защиты этих объектов определяется в соответствии с указаниями СН 305-77.

Объекты I и II категорий устройства молниезащиты должны быть защищены от всех четырех видов воздействия атмосферного электричества, а объекты III категории - от прямых ударов молнии и от заноса высоких потенциалов внутрь зданий и сооружений.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникации на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Для защиты объектов от прямых ударов молнии сооружаются молниеот-воды, принимающие на себя ток молнии и отводящие его в землю.

Объекты I категории молниезащиты защищают от прямых ударов молнии отдельно стоящими стержневыми, тросовыми молниеотводами или молниеотводами, устанавливаемыми на защищаемомобъекте, но электрически изолированными от него.

При обработке диэлектрических материалов (в нефтеперерабатывающей, текстильной, бумажной промышленности) возникает электризация тел статическое электричество. Это явление может служить причиной возгорания огнеопасных веществ, электризации человека с последующим разрядом на землю.

Разряд через тело человека может вызвать болевое и нервное нарушение и быть источником непроизвольного резкого движения, в результате которого возможны ушибы, падения и др.

При статической электризации на изолированных от земли металлических частях оборудования возникает относительно земли напряжение порядка десятков киловольт. Так, например, при движении резиновой ленты транспортера в устройствах ременной передачи на ленте (ремне) и на роликах транспортера (шкиве) из-за некоторой пробуксовки возникают электростатические заряды противоположных знаков, а разность их потенциалов достигает 45 кВ.

При разбрызгивании красок из пульверизатора разность потенциалов достигает 10 кВ; при протекании бензина (бензола) по трубам 3 кВ; при выпуске двуокиси углерода на баллоне 8 кВ, на резиновом шланге 10 кВ. Применяемое в электроустановках минеральное масло в процессе переливания также подвергается электризации. Искра, образующаяся при разности потенциалов 1 кВ, может воспламенить бензин, при разности потенциалов 3 кВ горючие газы, при разности потенциалов 5 кВ большую часть горючих шлей.

Электрические заряды, образующиеся на частях производственного оборудования, могут взаимно нейтрализоваться вследствие некоторой электропроводности влажного воздуха, а также стекать в землю по поверхности оборудования. При относительной влажности 85% и более разряды статического электричества практически не возникают.

Основными способами подавления статической электризации являются: заземление металлических частей производственного оборудования; предотвращение накопления значительных электрических зарядов путем установки в зоне электризации специальных нейтрализаторов; увеличение поверхностей и объемной электрической проводимости.

Заземляющие устройства для защиты от статического электричества, как правило, соединяются с защитными заземляющими устройствами электроустановок. Величина заземляющего контура для защиты от статического электричества должна находиться в пределах 100 Ом. Передвижные элементы (например, автоцистерна) во время налива горючих жидкостей заземляют переносным заземлением в виде гибкого многопроволочного провода.

Отвод статического электричества с тела человека осуществляется путем устройства электропроводящих полов в производственном помещении, рабочих площадок и других приспособлений, а также обеспечения работающих токопроводящей обувью и антистатическими халатами.

Опасность атмосферного электричества.

При грозовом разряде в течение короткого времени при токе молнии 100200 кА в канале молнии развивается температура до 30 000 °С. Вследствие быстрого расширения нагретого воздуха возникает взрывная волна (гром). Ток молнии производит тепловое, электромагнитное, а также механическое воздействие на те объекты, по которым он проходит. Молния может вызывать электростатическую и электромагнитную индукцию. Электростатическая индукция проявляется тем, что на изолированные металлические предметы наводятся опасные электрические потенциалы, вследствие чего возможно искрение между отдельными металлическими элементами конструкций и оборудования. Электромагнитная индукция обусловлена быстрыми изменениями значения тока молнии в металлических незамкнутых контурах, в результате чего в них наводится электродвижущая сила, что приводит к опасности искрообразования в местах сближения этих контуров.

При грозе во время попадания молнии в различные промышленные, транспортные и другие объекты, находящиеся вдали от производственных зданий и сооружений, возможно проникновение (занос) электрических потенциалов в здание по внешним металлическим сооружениям и коммуникациям эстакадам, монорельсам и канатам подвесных дорог, трубопроводам, оболочкам кабелей.

Для приема электрического разряда молнии и отвода ее тока в землю применяют устройства, называемые молниеотводами. Молниеотвод состоит из несущей части (опоры, которой может служить само здание или сооружение), молниеприемника и заземлителя. Наиболее распространены стержневые и тросовые молниеотводы.

Защитное действие молниеотводов основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения и характеризуется зоной защиты, под кото-рой понимается пространство, внутри которого здание защищено с некоторой вероятностью от попадания молнии. Вероятность поражения в расчетах принимается не более 1%, т. е. коэффициент надежности защиты должен составлять не менее 99%. Объект считается защищенным, если все его части находятся в пределах зоны защиты. Зону защиты определяют по эмпирическим формулам, графическим построениям, по таблицам и монограммам, приведенным в специальной литературе по проектированию it устройству молниезащиты.

Атмосферное статическое электричество

Заряды статического атмосферного электричества возникают в результате разряда молний. Молния поражает в первую очередь самые высокие сооружения и заземленные, т.к. их проводимость стремится к бесконечности. Зашита от прямого удара молнии организуется с помощью молниеотводов, которые состоят из трех элементов:

1)Молниеприемник (принимает разряд молнии)

2)Токоотвод (должен направить принятый разряд в землю)

3)Защитное заземление (отдает заряд земле)

Сопротивление молниеотвода должна быть ≤10 Ом

В зависимости от конструкции молниеприемника молниеотводы бывают:

1) Стержневые

2) Тросовые

3) Сетчатые, устанавливаются на сооружениях с шли кровлей, ячейка сетки должна быть ≤ 5х5 м

Молниеприемником может служить металлическая кровля, но в этом случае необходимо не менее двух токоотводов. При высоте сооружения более 50 м допускается установка молниеприемника на самом сооружении, но в этом случае необходимо предусмотреть не менее 2х токоотводов, которые должны присоединиться к самостоятельному заземленному контуру. Площадь сечения стержневого молниеприемника должна быть не менее 100 мм 2 , а площадь сечения тросового молниеприемника не менее 35мм 2

На предприятиях по производству строительных материалов и при изготовлении конструкция широко используют и получают в больших количествах вещества и материалы, обладающие диэлекртическими свойствами, что способствует возникновению зарядов статического электричества.

Статич. электр-во образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. При этом на трущихся веществах могут накапливаться электр-е заряды, которые легко стекают в землю, если тело является проводником электричества и оно заземлено. На диэлекртиках электрич-е заряды удерживаются продолжительное время, вследствие чего они получили название статич. электричества.

Процесс возникновения и накопления электр-их зарядов в веществах называют электризацией.

По существующим представлениям статич-е электр-во возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твердых веществ. На поверхности соприкосновения образуется двойной электрический слой.

В производственных условиях возникновение и накопление статич. эл-ва происходит:

1) при пневмотранспорте пылевидных и сыпучих материалов, при движении их в аппаратах; дроблении, перемешивании и просеивании; при перемешивании в смесителях;

2) при сливе, наливе и перекачке светлых нефтепродуктов по трубопроводам и резиновым шлангам в резервуарные емкости;

3) при транспортировании сжатых и сжиженных газов по трубам и истечении их через отверстия;

4) в процессах обработки материалов, а также при применении ременных передач и транспортных лент.

5) при движении автотранспортера, тележек на резиновых шинах и людей по сухому изолирующему покрытию.