Молниезащита 2 категории металлическая крыша. Молниезащита зданий и сооружений - Молниезащита II категории. Категории устройств молниезащиты. Типы зон молниезащиты


  • Причины загораний электродвигателей, генераторов и трансформаторов
  • Причины загораний осветительной аппаратуры
  • Причины загораний в распределительных устройствах, электрических аппаратах пуска, переключения, управления, защиты
  • Причины загораний в электронагревательных приборах, аппаратах, установках
  • Причины загораний комплектующих элементов
  • 1.4. Вероятностная оценка пожароопасных отказов в электротехнических устройствах
  • 1.5. Пожарная опасность комплектующих элементов электротехнических устройств
  • Глава 2
  • Нормативная оценка классов взрыво- и пожароопасных зон и их размеров
  • Аналитическая оценка классов взрыво- и пожароопасных зон и их размеров
  • 2.2. Классификация взрывоопасных смесей по группам и категориям
  • 2.3. Взрывозащищенное электрооборудование Классификация взрывозащищенного электрооборудования
  • Электрооборудование взрывозащищенное с видом взрывозащиты «взрывонепроницаемая оболочка»
  • Электрооборудование взрывозащищенное с защитой вида «е» (повышенной надежности против взрыва)
  • Электрооборудование взрывозащищенное с видом взрывозащиты «искробезопасная электрическая цепь»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «масляное заполнение оболочки с токоведущими частями»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «заполнение или продувка оболочки под избыточным давлением»
  • Электрооборудование взрывозащищенное с видом взрывозащиты «кварцевое заполнение оболочки»
  • Электрооборудование взрывозащищенное со специальным видом взрывозащиты
  • 2.4. Маркировка взрывозащищенного электрооборудования
  • 2.5. Зарубежное взрывозащищенное электрооборудование
  • 2.6. Особенности выбора, монтажа, эксплуатации и ремонта взрывозащищенного электрооборудования
  • 2.7. Особенности выбора, монтажа и эксплуатации электрооборудования пожароопасных зон и помещений с нормальной средой
  • 2.8. Контроль за противопожарным состоянием электроустановок
  • Глава 3 аппараты защиты в электроустановках
  • 3.1. Плавкие предохранители Принцип устройства и работы плавких предохранителей
  • Защитная характеристика предохранителя
  • Способы улучшения защитных характеристик предохранителей
  • Типы плавких предохранителей для установок напряжением до 1000 в
  • 3.2. Автоматические выключатели (автоматы)
  • Устройство и принцип работы небыстродействующих автоматов
  • Защитные характеристики автоматов
  • Типы установочных автоматов
  • 3.3. Тепловые реле
  • 3.4. Выбор аппаратов защиты
  • Требования к аппаратам защиты
  • Iср.Эл.М 1,25Iмакс;
  • Iкз (к) / Iн.Тепл 6;
  • Iкз (к) / Iн.Тепл 3.
  • Селективность (избирательность) действия аппаратов защиты
  • Выбор мест установки аппаратов защиты в зависимости от условий пожарной безопасности и технических условий
  • 3.5. Устройство защитного отключения (узо)
  • Глава 4 пожарная безопасность и методы расчета электрических сетей
  • 4.1. Нагрев проводников электрическим током
  • 4.2. Допустимая нагрузка на проводники по нагреву
  • 4.3. Пожарная опасность короткого замыкания в электрических сетях
  • 4.4. Противопожарная защита электрических сетей при проектировании
  • Расчет сетей по условиям нагрева. Выбор аппаратов защиты
  • Расчет сетей по потере напряжения
  • 4.5. Противопожарная защита электрических сетей при монтаже и эксплуатации
  • 4.6. Профилактика пожаров на вводах электрических сетей в здания и сооружения объектов агропромышленного комплекса
  • Глава 5 электродвигатели, трансформаторы и аппараты управления
  • 5.1. Общие сведения об электродвигателях
  • 5.2. Аварийные пожароопасные режимы работы электродвигателей
  • 5.3. Пожарная опасность трансформаторов
  • 5.4. Снижение пожароопасности электроизоляции обмоток элетродвигателей и трансформаторов
  • 5.5. Пожарная опасность электрических аппаратов управления
  • Глава 6 электроосветительные установки
  • 6.2. Осветительные приборы и светильники
  • 6.3. Системы и виды электрического освещения
  • 6.4. Расчет электрического освещения
  • 6.5. Пожарная опасность осветительных приборов
  • 6.6. Профилактика пожаров от осветительных приборов
  • Глава 7 заземление и зануление в электроустановках напряжением до 1000 в
  • 7.1. Опасность поражения электрическим током
  • 7.2. Заземление и зануление электроустановок как устройств электро- и пожарной безопасности
  • 7.3. Устройство заземлений и занулений
  • 7.4. Расчет заземляющих устройств
  • 7.5. Защитные заземления и зануления во взрывоопасных зонах
  • 7.6. Эксплуатация и испытания заземляющих устройств
  • Глава 8 молниезащита
  • 8.1. Молния и ее характеристики
  • 8.2. Пожаро- и взрывоопасность воздействия молнии
  • Воздействия прямого удара молнии
  • Вторичные воздействия молнии
  • 8.3. Классификация зданий и сооружений по устройству молниезащиты Категории молниезащиты
  • Обязательность устройства молниезащиты
  • Требования к устройствам молниезащиты
  • 8.4. Молниеотводы
  • Конструктивное выполнение молниеотводов
  • Зоны защиты молниеотводов
  • 8.5. Защита зданий и сооружений от прямых ударов молнии Защита зданий и сооружений I категории
  • Защита зданий и сооружений II категории
  • Защита взрывоопасных наружных технологических установок и открытых складов
  • Защита зданий и сооружений III категории
  • 8.6. Защита зданий и сооружений от вторичных воздействий молнии
  • 8.7. Эксплуатация устройств молниезащиты Испытания и приемка в эксплуатацию устройств молниезащиты
  • Контроль состояния и обслуживание устройств молниезащиты
  • Глава 9 защита взрывоопасных производств от разрядов статического электричества
  • 9.1. Общие представления об электризации
  • 9.2. Воспламеняющая способность искр статического электричества и его физиологическое воздействие на организм человека
  • 9.3. Приборы для измерения параметров статического электричества
  • 9.4. Способы устранения опасности статического электричества
  • Заземление
  • Уменьшение объемного и поверхностного удельных электрических сопротивлений
  • Ионизация воздуха
  • Дополнительные способы уменьшения опасности от статической электризации
  • 9.5. Эксплуатация устройств защиты от разрядов статического электричества
  • Глава 10 технико-экономическая эффективность решений противопожарной защиты электроустановок, молниезащиты и защиты от статического электричества
  • Приложения
  • Технические данные предохранителей
  • Технические данные автоматов серии а3100
  • Технические характеристики автоматов а3713б
  • Технические данные автоматов типа ап-50 с комбинированным расцепителем на переменный ток
  • Технические характеристики автоматов серии ва
  • Технические параметры однополюсных автоматов серии ае1000 и трехполюсных серии ае200
  • Технические данные магнитных пускателей серии пме и па
  • Допустимая потеря напряжения в осветительных и силовых сетях
  • Значение коэффициента с для определения (по упрощенной формуле) сечений проводников и потери напряжения в электропроводках
  • Коэффициенты использования вертикальных заземлителей ηв и горизонтальных соединительных полос ηг
  • Перечень стандартов на взрывозащищенное электрооборудование
  • Литература
  • 129366, Москва, ул. Б. Галушкина, 4
  • 8.3. Классификация зданий и сооружений по устройству молниезащиты Категории молниезащиты

    Тяжесть опасных последствий прямого удара молнии при ее термических, механических и электрических воздействиях, а также искрениях и перекрытиях, вызванных другими видами воздействий, зависит от конструктивно-планировочных особенностей зданий и сооружений и пожаро-взрывоопасности технологического процесса. Например, в производствах, постоянно связанных с наличием открытого пламени, при применении несгораемых материалов и конструкций протекание тока молнии не представляет большой опасности. Однако наличие внутри объекта взрывоопасной или пожароопасной среды создает угрозу пожара, разрушений, человеческих жертв, больших материальных убытков.

    При таком разнообразии конструктивных и технологических условий предъявлять одинаковые требования к молниезащите всех объектов означало бы или предусматривать чрезмерные излишества, или мириться с неизбежностью значительных убытков, вызванных последствиями поражения молнией. Поэтому в инструкции принят дифференцированный подход к устройству молниезащиты различных объектов, в связи с чем – по устройству молниезащиты здания и сооружения разделены на три категории, отличающиеся по тяжести возможных последствий поражения молнией.

    I категория – здания и сооружения или их части с взрывоопасными зонами классов В-I и В-II по Правилам устройства электроустановок (ПУЭ-86). В них хранятся или содержатся постоянно, либо появляются во время производственного процесса смеси газов, паров или пыли горючих веществ с воздухом или иными окислителями, способные взорваться от электрической искры.

    II категория – здания и сооружения или их части, в которых имеются взрывоопасные зоны классов В-Iа, В-Iб, В-IIа согласно ПУЭ. В них взрывоопасные смеси могут появляться лишь при аварии или неисправностях в технологическом процессе. К этой категории принадлежат также наружные технологические установки и склады, содержащие взрывоопасные газы и пары, горючие и легковоспламеняющиеся жидкости (газгольдеры, цистерны и резервуары, сливно-наливные эстакады), отнесенные по ПУЭ к взрывоопасным зонам класса В-Iг.

    III категория – несколько вариантов зданий, в том числе: здания и сооружения с пожароопасными зонами классов П-I, П-II и П-IIа согласно ПУЭ; наружные технологические установки, открытые склады горючих веществ, где применяются или хранятся горючие жидкости с температурой вспышки паров выше 61 С или твердые горючие вещества, отнесенные по ПУЭ к зоне класса П-III.

    Обязательность устройства молниезащиты

    При выборе категории устройств молниезащиты учитывают важность объекта, его высоту, расположение соседних объектов, интенсивность грозовой деятельности и другие факторы. Интенсивность грозовой деятельности характеризуется средним количеством грозовых часов в год n ч. Эта величина может быть получена по данным местной метеорологической станции. Кроме того, существует карта , на которой нанесены линии средней за год продолжительности гроз на территории России. На ней же приближенно размечены и крупные области, где наблюдается одна и та же грозовая деятельность. Диапазон ее изменения довольно велик и зависит от климатических факторов и рельефа местности. В северных областях (Мурманск, Камчатка) она составляет не более 10 ч в год, для районов на широте 50-55 она колеблется от 20 до 30 ч, а на юге (Кавказ, Донбас) она может достигать 100-200 ч в год. Да и в пределах одного района с низкой грозовой активностью встречаются участки с резко повышенным числом грозовых часов в год.

    Иногда оценка грозовой деятельности измеряется количеством грозовых дней в году n д. Принято считать продолжительность грозы приблизительно равной 1,5 ч, если n д = 30 дням, и 2 ч, когда n д больше 30 дней. Следовательно, n ч = (1,5-2) n д.

    Однако более важной и информативной характеристикой для оценки возможного числа поражений объектов молнией является плотность ударов нисходящих молний на единицу земной поверхности.

    Плотность ударов молнии в землю сильно колеблется по регионам земного шара и зависит от тех же факторов, что и интенсивность гроз. Особенно велико влияние рельефа в горной местности, где грозовые фронты распространяются преимущественно по узким коридорам.

    Наблюдениями установлена корреляционная связь между плотностью разрядов в землю и продолжительностью гроз. Эта корреляционная зависимость распространена на всю территорию Россию и связывает число ударов нисходящей молнии в 1 км 2 земной поверхности с конкретной продолжительностью гроз в часах. Для произвольного пункта на территории России удельная плотность ударов молнии в землю n определяется, исходя из средней продолжительности гроз в часах, следующим образом:

    Используя значения n , можно определить ожидаемое количество поражений молнией в год N :

    для зданий и сооружений прямоугольной формы

    N = [(S+ 6h x )(L+ 6h x )- 7,7h 2 x ]n 10 -6 ; (8.7)

    для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

    N = 9 h 2 x n 10 -6 , (8.8)

    где h x – наибольшая высота здания или сооружения, м; S и L – соответственно ширина и длина здания или сооружения, м; n - среднегодовое число ударов молнии в 1 км 2 земной поверхности (удельная плотность ударов молнии в землю).

    Если здание имеет сложную конфигурацию, то при расчете по формуле (8.7) в качестве S и L принимается ширина и длина наименьшего прямоугольника, в который может быть вписано здание или сооружение в плане. Принято считать, что молнии попадают в здание или сооружение в пределах территории, контур которой удален от контура сооружения на три его высоты.

    Оценивая по формулам (8.7) и (8.8) число поражений молнией объектов разных размеров и форм, например, можно видеть, что при средней продолжительности гроз 40-60 ч в год для здания высотой 20 м и размерами в плане 100100 м можно ожидать не более одного поражения за 5 лет, для сосредоточенного объекта высотой 50 м можно ожидать не более одного поражения за 3-4 года.

    Таким образом, при умеренных размерах зданий и сооружений (высота 20-50 м, длина и ширина примерно 100 м) поражение их молнией является редким событием.

    Удельную плотность ударов молнии в землю n в месте дислокации объекта можно приближенно определить по формуле

    n = 0,23n д 1,3 . (8.9)

    На всей территории России здания и сооружения I категории должны быть обязательно защищены от прямых ударов молнии, электростатической и электромагнитной индукции и заноса в них высокого потенциала через наземные и подземные коммуникации, а молниеотводы должны предусматриваться с зонами защиты А. В районах с очень малой интенсивностью грозовой деятельности вероятность удара в здание I категории очень мала, но материальный ущерб может быть велик, и затраты на молниезащиту в этом случае вполне оправданы.

    Здания и сооружения II категории должны быть защищены от прямых ударов молнии, вторичных ее воздействий и заноса в них высоких потенциалов через наземные и подземные коммуникации только в местностях со средней продолжительностью гроз n ч  10. Тип зоны защиты молниеотводов зависит от показателя N : зона типа А принимается при N > 1, а зона типа Б – при N  1. Наружные технологические установки класса В-1г, относимые также ко II категории, подлежат защите от прямых ударов молнии на всей территории России, а молниеотводы предусматриваются с зонами типа Б. Некоторые из этих установок подлежат защите и от электростатической индукции (резервуары с плавающими крышами или понтонами).

    Здания и сооружения III категории (с зонами классов П-I, П-II, П-IIа) подлежат молниезащите в местностях со средней продолжительностью гроз 20 и более часов в год, а тип зоны защиты молниеотводов зависит от степени огнестойкости здания. Например, зона типа Б требуется для зданий и сооружений I и II степени огнестойкости при 0,1 < N  2, а для III, IV и V степени огнестойкости при 0,02 < N  2; при N > 2 необходима зона типа А. Для наружных установок класса П-III молниезащита предусматривается при средней продолжительности гроз 20 и более часов в год при зоне защиты типа Б, если 0,1 < N  2; при N > 2 – зона типа А.

    Все здания и сооружения III категории должны быть защищены от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации, а наружные установки должны быть защищены только от прямых ударов молнии. Таким образом, обязательность устройства молниезащиты зданий или сооружений I, II и III категории определяется средней продолжительностью гроз n ч и ожидаемым количеством поражений N молнией в год. При несовпадении одного из этих показателей с величинами по нормам устройство молниезащиты становится необязательным.

    "

    Удар молнии способен привести к разрушению промышленных и жилых сооружений, пожару, взрыву, выходу из строя линий электропередач (ЛЭП), электроустановок и средств информационно - коммуникационных технологий (ИКТ), а также опасен для людей и животных. Особенно опасна эта природная стихия для так называемых критически важных объектов. Поэтому в качестве средств защиты объектов и строений необходим целый комплекс мер, причем как организационного, так и научно-технического характера. Эта совокупность мер и получила название - молниезащита. Она служит для снижения рисков воздействия такого рода катаклизмов на промышленную и гражданскую инфраструктуру.

    От степени пожароопасности (или от риска взрыва) здания или строения зависит уровень тяжести последствий от удара молнии. Дополнительно надо учесть возможность искрений в перекрытиях, которые могут быть вызваны сопутствующими молнии воздействиями. К примеру, на производствах, на которых используется открытый огонь и протекают процессы горения, применяются, как правило, несгораемые конструкции. В таком случае, протекание тока молнии не вызывает большой опасности. А вот если в цехах находятся взрывоопасные вещества, то возникает повышенный риск человеческих жертв и огромных материальных убытков. Для специалиста налицо огромный разброс технологических условий для разного рода зданий, объектов и организаций. И в таком случае, предъявить для всех этих объектов одинаковые требования к молниезащите означает либо вложить лишние финансовые средства в проектирование систем защиты, либо же смириться с неизбежностью больших рисков и ущерба, вызванного негативными последствиями ударов молнии. При проектировании систем молниезащиты необходимо учесть и метеорологическую обстановку в данном регионе. Например, статистика гроз в Норильске будет отличаться от статистики гроз в Сочи. Поэтому международные нормативные документы предписывают проектировщикам произвести расчет рисков и потенциального ущерба от воздействия молний. В результате этих причин, здания и строения стали подразделять на классы (уровни защиты), которые различаются по степени тяжести возможного ущерба от поражения молнией. А такой фактор, как активность гроз и молний в соответствующей географической точке, где расположен защищаемый объект, определяет категорию молниезащиты.

    Нормативная правовая и технологическая база классификации защищаемых объектов

    Международная практика по созданию правовых нормативных документов в области молниезащиты и электробезопасности предусматривает разработку следующих материалов: технические регламенты (ТР), технические кодексы устоявшейся практики (ТКП), международные стандарты (ИСО/МЭК), национальные стандарты (ГОСТ), ведомственные инструкции и руководящие документы (РД).

    В области молниезащиты и электробезопасности объектов промышленного и гражданского назначения наиболее часто используемыми при проектировании, монтаже и сертификации (категорировании) нормативными материалами являются следующие:

    • "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87);
    • "Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций" (СО-153-34.21.122-2003);
    • ГОСТ Р МЭК 62305-1-2010. Менеджмент риска. Защита от молнии. Часть 1. Общие принципы;
    • ГОСТ Р МЭК 62305-2-2010. Менеджмент риска. Защита от молнии. Часть 2. Оценка риска;
    • МЭК 62305-3-2010. Защита от атмосферного электричества. Часть 3. Физические повреждения зданий, сооружений и опасность для жизни;
    • МЭК 62305-4:2010 Защита от молнии. Часть 4. Электрические и электронные системы в зданиях (сооружениях);
    • Правила устройства электроустановок (ПУЭ). 7-ое издание (утв. приказом Минэнерго РФ от 8 июля 2002 г. N 204) .

    Классы и уровни молниезащиты строений и объектов промышленных и гражданских объектов

    В соответствие с вышеизложенными обстоятельствами давайте проанализируем выше упомянутые нормативные документы на предмет классификации и категорирования защищаемых объектов.

    "Инструкция по молниезащите зданий и сооружений" (РД 34.21.122-87)

    Является самым старым, в хронологическом плане, нормативным документом времён СССР (в дальнейшем будем коротко называть его РД). Это документ прямого действия, он имел исключительную юридическую силу, и все организации были обязаны его применять вне зависимости от их ведомственной принадлежности. Согласно данной инструкции деление зданий и сооружений их целевому назначению и типу молниезащитных систем проводилось по трём категориям, которые подразделялись ещё на классы взрывоопасных и пожароопасных зон, определённых в ПУЭ, а также по типу зоны защиты, которой приписывается определенная надежность

    — 0,995 для зоны А и 0,95 для зоны Б.

    1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к I категории (согласно РД), обычно реализуется с помощью отдельно стоящих стержневых или тросовых молниеотводов.

    С помощью таких молниеотводов обеспечивается зона защиты типа А (см. РД, приложение 3). Элементы молниеотводов должны быть удалены от защищаемого объекта, а также от подземных металлических коммуникаций. Можно выбрать естественный или искусственный заземлитель (см. п.1.8. РД).

    Конструкции заземлителей, допустимые для отдельно стоящих молниеотводов:

    1. а) железобетонный подножник (один или несколько), его длина не менее 2 м или же железобетонная свая (может быть несколько), ее длина не менее 5 м;
    2. б) стойка железобетонной опоры (диаметр не менее чем 0,25 м, заглублена в землю не менее чем на 5 м);
    3. в) железобетонный фундамент произвольной формы (площадь поверхности контакта с землей не менее 10 м2);
    4. г) искусственный заземлитель может состоять из 3-х вертикальных электродов и более длиной не менее 3 м, которые объединены горизонтальным электродом, расстояние между этими вертикальными электродами не менее 5 м.

    Защита от заноса высокого потенциала выполняется согласно п.2.2., 1.8. РД.

    1. Защита от прямых ударов молнии зданий и сооружений, которые относятся по устройству молниезащиты к II категории (согласно РД), обычно реализуется таким образом: устанавливаются отдельно стоящие стержневые или тросовые молниеотводы.

    Или же они устанавливаются прямо на защищаемом объекте. Они обеспечивают зону защиты в соответствии с требованиями РД (см. табл. 1, п. 2.6 и приложение 3.) При установке молниеотводов на защищаемом объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть проведено не менее 2-х токоотводов. Когда уклон кровли здания не более 1:8 можно применить молниеприемную сетку. Установка молниеприемников или наложение молниеприемной сетки не обязательно для строений с металлическими фермами, если выполняются условия, при которых в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

    На зданиях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля.

    Токоотводы от металлической кровли или молниеприемной сетки прокладываются к заземлителям не реже чем через 25 м по периметру здания.

    При удельном сопротивлении грунта менее 500 Ом*м и площади здания более 250 кв. м. , а также в грунте с удельным сопротивлением от 500 до 1000 Ом*м при площади здания более 900 кв.м. выполняется горизонтальный контур вокруг здания на глубине 0,5 м. В первом случае, если площадь здания менее 250 кв.м., в месте соединения токоотвода приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 метра, а во втором случае при площади менее 900 кв.м. приваривается не менее двух электродов.

    1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к III категории, должна выполняться одним из способов, указанных в РД (см.п.2.11, соблюдая также п. 2.12. и 2.14. РД), например, с помощью прокладки моолниеприёмной сетки. При прокладке такой сетки в качестве токоотводов используются металлические конструкции зданий.

    Во всех возможных случаях для объектов III категории в качестве заземлителей для защиты от прямых ударов молнии рекомендуется применять железобетонные фундаменты самих зданий. Если же нет такой возможности, то вполне применимы и искусственные заземлители. Искусственный заземлитель обычно изготовлен из двух и более вертикальных электродов длиной не менее 3 м, которые объединены горизонтальным электродом длиной не менее 5 м.

    Если же рекомендовано использовать в качестве молниеприемников сетки или металлической кровли, то по всему периметру здания в земле на глубине не менее 0,5 м прокладывают наружный контур, который изготовлен из горизонтальных электродов. В зданиях, площадь которых более 100 м, наружный контур заземления может быть использован для выравнивания потенциалов внутри здания (п.1.9. РД). Заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки (п.1.7 ПУЭ).

    Для защиты от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю защиты от прямых ударов молний.

    "Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций" (СО 153-34.21.122-2003)

    Далее СО, документ, носящий рекомендательный характер, пришедший на смену РД, но его не отменивший, не внёс определённости в область классификации и категорирования объектов защиты от воздействия атмосферного электричества. Во-первых, он не преемственен с предыдущим нормативным документом - РД, а во-вторых анонсированные справочные и руководящие материалы в качестве приложений к СО так и не вышли. В итоге Ростехнадзор в своём разъяснении о совместном применении РД и СО №10-03-04 / 182 от 01. 12. 2004 разрешил совместное (комбинированное) применение двух инструкций, что окончательно запутало и так не простую ситуацию с правоприменительной базой в области молниезащиты строений и сооружений промышленного и гражданского назначения. Так в чём же особенности этого документа? Во-первых, в отличие, от РД, в котором предусматривалось 3 категории объектов, выделенных по уровню их защищённости от воздействия молнии, в СО вводится уже 4 класса объектов по параметрам молниезащитных систем. Во-вторых, регулятор предлагает ввести классификатор по воздействиям тока молнии. Это сделано, чтобы каким-то образом нормировать средства защиты от прямых ударов молнии. В целом этот нормативный документ приближен к рекомендациям МЭК, но полного соответствия с ними не имеет, а в основном своём предназначении СО определяет надежность защиты для обычных и специальных объектов в соответствии с уровнем защиты, который устанавливается отраслевыми РД для объектов различного типа и назначения.

    ГОСТ Р МЭК 62305-1,2,3,4-2010

    • - серия документов МЭК, возведенных уже в ранг государственных стандартов РФ в части организации систем защиты от молний причем и для промышленных, и для гражданских сооружений. Из рабочей практики нам известно, что обеспечить абсолютную защиту от молнии невозможно. Поэтому технические руководства, которые доступны в настоящей серии стандартов, позволяют разработать эффективные cистемы молниезащиты (МЗ), обеспечивающие существенное понижение рисков (возможного ущерба) от поражения молнией до приемлемого уровня, а остаточные риски перевести в плоскость страховых случаев. С помощью данной серии стандартов стало возможно интегрировать всю совокупность мер защиты в общую систему. Также были выделены целых 2 группы критериев для проектирования и применения мер защиты:
    • комплекс защитных мер, который необходим для снижения уровня повреждения объектов, а также для уменьшения угрозы опасности для жизни персонала, находящегося в здании, образует первую группу (МЭК 62305-3);
    • совокупность мер защиты, которые требуются для уменьшения количества случаев выхода из строя электрических схем, которые расположены в строениях образуют вторую группу (МЭК 62305-4).

    Только приняв во внимание все параметры защищаемого объекта, проектировщик выбирает соответствующие уровни защиты от молнии.

    В данной серии стандартов установлены 4 класса МЗ (I - IV), а уже в соответствие им установлены уровни молниезащиты (см. МЭК 62305-1, табл. 1).

    Любой класс можно описать определёнными параметрами, которые считаются либо зависящими от уровня молниезащиты или независящими:

    Параметры, которые зависят от класса МЗ:

    • параметры, описывающие молнию (см. МЭК 62305-1, табл. 3,4,5);
    • катящаяся сфера (берется ее R), ячейка (берется ее размер), величина угла защиты (см. МЭК 62305-3, п. 5.2.2);
    • расстояния между токоотводами (типичные), расстояния между кольцевыми проводниками (см. МЭК 62305-3,п. 5.3.3);
    • расстояния от места опасного искрения, которые можно считать неопасными (см. МЭК 62305-3, п.6.3);
    • длина заземлителей (берется минимальная величина), (см. МЭК 62305-3, п.5.4.2).

    Параметры, которые не зависят от класса МЗ:

    1. величина уравнивания грозовых потенциалов (см. МЭК 62305-3, п. 6.2);
    2. замеряемая толщина листов из металла (минимальное значение), а также металлических труб, находящихся в молниеприемниках (см. МЭК 62305-3, п.5.2.5);
    3. материалы МЗ, условия применения этих материалов (см. МЭК 62305-3, п.5.5);
    4. параметры молниеприёмников (материал, из которого они сделаны, минимальные размеры, конфигурация). Здесь же рассматриваем токоотводы и заземлители (см. МЭК 62305-3, п.5.6).

    Остановимся более подробно на данном пункте, т.к. его трактовка в разных нормативных документах имеет некоторые отличительные особенности.

    При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (по возможности менее 10 Ом, измеренное на низкой частоте). Для молниезащиты предпочтительнее использовать встроенный в здание и пригодный для всех целей отдельный заземлитель (например, для молниезащиты, систем электропередачи и связи).

    Системы заземления должны соединяться в соответствии с требованиями МЭК 62305-3, п. 6.2. Используют два основных конструктивных типа (А и В) размещения заземляющих электродов.

    Расположение типа А: Данный тип размещения включает горизонтальные или вертикальные электроды, установленные за пределами защищаемого здания и присоединенные к каждому токоотводу. В расположении типа А общее количество используемых заземляющих электродов должно быть не менее двух.

    Расположение типа В: Данный тип расположения включает либо кольцевой проводник, находящийся за пределами защищаемого здания, соприкасающийся с почвой на 80 % своей полной длины, либо заземляющий электрод в фундаменте. Эти заземляющие электроды также могут быть сетчатыми. Расположение заземления типа B рекомендуется использовать для зданий с электронными системами, т.к. оно позволяет снизить влияние помех и перенапряжений. Параметры заземляющих электродов определены в МЭК 62305-3, п. 5.4.2.2.

    Тем не менее, исходя из общего совокупного анализа действующих нормативных документов, можно построить условную классификацию объектов молниезащиты по уровням МЗ.

    Объект I-го класса МЗ

    Объект: специальный (критически важный), опасный для окружающей среды, жизнедеятельности человека и животных. Тип объекта: химическое и нефтехимическое производство, биохимические и бактериологические концерны, производство взрывчатки, атомные электростанции и др.

    Гарантированная надёжность защиты от прямого удара молнии - 0,98 (для отдельной категории объектов зоны А может устанавливаться более высокий уровень 0,995). Возникающие негативные последствия от удара молнии: пожар, взрыв, выбросы токсичных веществ, повышенная радиация на значительной территории и пр. Крайний случай - экологическая катастрофа с непоправимыми материальными и человеческими жертвами.

    Объект II-го класса МЗ

    Здесь описаны типы специальных объектов, представляющих опасность для непосредственного окружения.

    Тип объекта: нефтепереработка, АЗС, мукомольные, деревообрабатывающие фабрики, производство пластмассовых изделий и пр.

    Гарантированная надёжность защиты от прямого удара молнии - 0,95 (для отдельной категории объектов зоны Б может устанавливаться более высокий уровень).

    Возникающие негативные последствия от удара молнии: пожары, взрывы внутри помещения и на прилегающей территории. Вероятны сопутствующие разрушения стен и перекрытий, а также сильные травмы и даже гибель сотрудников и посетителей. В этом случае фиксируются значительные финансовые потери.

    Объект III-го класса МЗ

    Объект: специальный, критическая инфраструктура.

    Тип объекта: предприятия связи и ИКТ, трубопроводный транспорт, ЛЭП, оборудование централизованного отопления, транспортная инфраструктура и др.

    Гарантированная надёжность защиты от прямого удара молнии - 0,9.

    Возникающие негативные последствия от удара молнии: прерывание связи, частичная или полная потеря управления, перебои с водоснабжением и отоплением, временное снижение качества жизни, материальные потери.

    Объект IV-го класса МЗ

    Объект: общий, промышленные и гражданские сооружения и сопутствующая инфраструктура.

    Тип объекта: жилые дома, производственные сооружения (высотой не более 60 м.), дома и коттеджи в селах, объекты социально-культурного назначения, учреждения образования, больницы, а также музеи, храмы, церкви и др.

    Гарантированная надёжность защиты от прямого удара молнии - 0,8. Возникающие негативные последствия от удара молнии: сильные пожары, разрушения зданий, нарушения работы транспорта, прерывание систем коммуникаций, возможная утрата исторического и культурного наследия. Значительные материальные и финансовые потери. Вероятны человеческие жертвы. Как следует из приведенной системы классификации, любой класс МЗ имеет отличия от другого класса по характеристикам (назначению) объекта и параметрам молниезащиты, а также типом заземляющего устройства, конструкция которого определяется назначением и размещением сооружения.

    Заключение

    Рассмотрев в этом аналитическом обзоре проблемы молниезащиты объектов промышленного и гражданского назначения и соответствующей инфраструктуры, можно констатировать, что вопросы защиты от воздействия атмосферного электричества в плане регулирования и применения правовой нормативной технической базы в РФ определяются достаточно широким спектром действующих нормативных документов, а именно: СО, РД, ГОСТы и пр. Использование сочетания положений этих документов, позволит построить полноценную систему молниезащиты для объектов всех классов и категорий. Можно выделить 2 подхода к проектированию молниезащиты. Первый - построение молниезащиты в соответствии с категориями РД. Второй - обеспечение требуемой надежности защиты, руководствуясь СО и отраслевыми стандартами. Выбор нормативных документов зависит от сферы, в которой производится проектирование и наполненности предметной области внутренними документами. В основном, отраслевые нормативы содержат модернизированные требования СО и РД, так что можно сказать, что эти документы по-прежнему остаются определяющими в силу традиций многолетнего опыта использования. ГОСТы и стандарты МЭК используются как ссылочные, а также к ним прибегают в случае неполноты или отсутствия некоторых параметров МЗ в РД или СО.

    Требуется консультация по организации заземления и молниезащиты для вашего объекта? Обратитесь в

    Необходимость обустройства качественных систем молниезащиты жилых и промышленных зданий особенно остро возникла в начале прошлого столетия во времена всеобщей индустриализации и электрификации, актуальна она и в настоящее время. Сегодня ежедневно на планете Земля наблюдается около 44-45 тысяч гроз, которые могут привести к выходу электроприборов из строя, повреждению целостности зданий и построек, пожарам и гибели людей.

    Для создания работоспособных, эффективных и оптимальных для каждого объекта систем разработаны общепризнанные нормативы проектирования и организации молниезащиты. Существуют международные и отечественные стандарты и правила. Кроме того, в России различают отраслевые и корпоративные стандарты (например, Газпрома, МОЭК и т.п.). В основу всех норм, регламентирующих проектирование молниезащиты, положен многолетний опыт человечества по организации электробезопасности жилых домов и промышленных предприятий, а также особенности современных построек

    Российские нормативы в области молниезащиты

    Создание отечественной нормативной базы по проектированию комплекса мер для обеспечения молниезащиты берет начало в 30-х годах минувшего века. Первоначально были разработаны требования и правила для производственных зданий и сооружений, а также линий электропередач. В 50-х годах прошлого столетия эти требования начали использоваться для частных домов. Позже с учетом многолетних наблюдений и исследований электромагнитной обстановки во время удара молнии на территории бывших союзных республик Министерство энергетики СССР ввело Инструкцию по обустройству молниезащиты зданий и сооружений РД 34.21.122-87. Эта инструкция, как наследие, действует до сих пор. Однако она давно устарела, поэтому для создания современных систем громоотводов пользуются международными стандартами, установленными Международной электротехнической комиссией (МЭК) и российскими инструкциями более поздних редакций.

    В России специалисты и сейчас для создания ряда мер молниезащиты ориентируются на требования и нормы, изложенные в советской инструкции РД 34.21.122-87 (скачать в pdf>> ). Данный норматив является первичным документом, на который опираются профессионалы при выборе схемы конструкции громоотводов на этапе проектирования зданий и сооружений. Она дает толкование всех важных терминов и понятий, описывает требования к органзации защиты от молний и к конструкциям громоотводов, а также расчет молниеотводов. Именно она классифицирует здания и позволяет определить необходимый уровень защиты. К недостатком РД 34.21.122-87относят отсутствие описаний нормативов по организации молниезащиты для склада взрывчатых веществ и пороха, а также в ней нет рекомендаций по выбору материалов для заземлений и т.д. Дополнить и обновить положения советского документа попытались в «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» СО-153-34.21.122-2003 (скачать в pdf>> ). Она включает нормы грозозащиты в коммуникациях.

    Седьмая редакция ПУЭ (Правила устройства электроустановок 7-е издание, Главы 2.4, 2.5, 4.2) разработана с учетом всех видов и типов электрического оснащения и агрегатов. В этом издании собраны все базовые требования электробезопасности и заземления, используемые при обустройстве защиты от удара молнией промышленных и бытовых объектов. Подвести российские стандарты к мировым требованиям IEC в декабре 2011 года позволили первая и вторая часть ГОСТа Р МЭК 62305-1-2010 «Защита от молнии» , а также ГОСТ Р 50571-4-44-2011 «2011 Электроустановки низковольтные. Требования по обеспечению безопасности. Защита от скачков напряжения и электромагнитных помех» (действует с 01.07.2012). Этот документ регламентирует основные нормы по организации безопасности низковольтных установок при появлении отклонений напряжения и электромагнитных помех. Этот стандарт не действует на системы распределения электричества населению, на промышленные объекты и на системы для генерирования и выдачи электроэнергии для них.

    Требования к механизмам защиты электрических сетей и электрооборудования при прямом или косвенном влиянии грозовых или иных переходных перегрузок для коммутации к силовым цепям переменного тока (частотой 50 - 60 Гц), постоянного тока и к оснащению с номинальным напряжением до 1000 В (действующее значение) или 1500 В постоянного тока подробно изложены в ГОСТе Р 51992-2011 (МЭК 61643-1-2005) «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний» (с 01.07.2012).

    Принципы подбора, монтирования и координации устройств грозозащиты от импульсных перенапряжений, предназначенных для подсоединения к силовым цепям переменного тока (частотой 50-60 Гц) или постоянного тока и к оборудованию на номинальное напряжение до 1000 В (действующее значение) переменного тока или 1500 В постоянного тока описаны в ГОСТ Р МЭК 61643-12-2011 «Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и использования» (с 01.01.2013).

    Все основные требования при прямом или косвенном воздействии грозовых или прочих переходных перенапряжений к устройствам для защиты телекоммуникационных и сигнализационных сетей с обозначенными напряжениями системы до 1000 В переменного тока и 1500 В постоянного тока регламентируются ГОСТом Р 54986-2012 (МЭК 61643-21: 2009) «Устройства защиты от импульсных перенапряжений низковольтные. Часть 21. УЗИП для систем телекоммуникации и сигнализации (информационных систем). Требования к работоспособности и методы испытаний» (с 01.07.2013).

    Группа стандартов МЭК (IEC) и их связь

    Развитие науки и электротехники не стоит на месте. Наиболее полно, детально и качественно современные мероприятия по грозозащите отображены во всемирных нормативах МЭК «Защита от воздействия молнии МЭК 62305:2010».

    Стандарт «Защита от воздействия молнии МЭК 62305:2010» определяет базовые правила защиты от порчи молнией любых построек, живущих в них животных и людей, разных инженерных коммуникаций и систем и иных конструкций относящихся к ним, кроме железнодорожной системы, автотранспорта, воздушных и водных транспортных средств, подземных трубопроводов повышенного давления и т.п.

    Нормативы МЭК включают стандарт, определяющий общие положения и описывающий потенциально возможные последствия и опасность молний 62305-1. Потребность организации защиты определяется в соответствии с системой расчета риска и с учетом материального эффекта от установки мер защиты от ударов молнии описывает стандарт 62305-2. Третья часть МЭК 62305:2010 посвящена описанию мер безопасности, требуемых для снижения показателей аварий в постройках и сведения к минимуму уровня опасности для жизни и здоровья людей, находящихся внутри. В четвертой части данного стандарта описан комплекс мер для понижения числа отказов электросистем, приборов и устройств внутри зданий.

    Взаимосвязь группы правил МЭК 62305:2010 определяется уровнем опасности поражения молнией объекта и риском возникновения возможных повреждений. При повышенном риске прямого попадания молнии и необходимости обустройства внешней защиты от прямых ее ударов в строения пользуются требованиями стандарта 62305-3:2010. При повышенной опасности поражения электрооборудования и порчи электросетей от вторичного воздействия молнии актуален стандарт 62305-4:2010.

    Сравнение отечественных стандартов и МЭК

    Современные специалисты, занимающиеся вопросами проектировки и создания молниезащиты современных построек любого назначения, отмечают, что требования МЭК гораздо строже в сравнении с инструкцией советских времен и даже более поздними российскими изданиями ГОСТов. Как правило, если российские Инструкции не дают полный объем необходимой информации для правильного и эффективного создания защиты от молний, профессионалы используют признанные в мире стандарты МЭК.

    Наиболее ярким отличием, например инструкции РД 34.21.122-87 от норм IEC при создании внешней защиты является, отсутствие подробного описания организации молниеприемной сети для сложных рельефных крыш, а также отсутствие рекомендаций по рекомендуемым к использованию материалов для заземлений и т.д. При обустройстве внутренней системы защиты стандарты МЭК детально описывают применение разрядников без искровых промежутков для предотвращения пожаров, выхода из строя бытовой техники, промышленного оборудования и внутренних сетей.

    Нормативные требования к молниезащите

    Еще раз коротко самое главное о стандартизации.

    Состав системы молниезащиты по стандартам IEC (МЭК)

    Кратко о том, что входит в состав комплекса мероприятий по защите от молний и гроз по мнению Международной электротехнической комиссии, а также взаимосвязанные решения в области внешней и внутренней молниезащиты.

    Требования к элементам внешней молниезащиты

    Какие испытания проходят элементы молниеприемные системы, соединительные компоненты, проводники, заземляющие электроды? Описание методик проверки, имитирующих воздействие естественных атмосферных условий и воздействие коррозии на компоненты.

    Расчет стоимости

    Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

    Выберете размер... 10 12 14 16 18 20 22

    Наши объекты

      Здание Военторга на Воздвиженке, г. Москва

      Адрес объекта: г. Москва, ул. Воздвиженка, 10.

      Вид работ: Монтаж системы внешней молниезащиты здания.

      Комплектующие: производства компании Dehn+Sohne Gmbh.

      Элементы комплекта: стальной оцинкованный проводник Rd8; хомут-держатель Rd8-10 трубный 17.2 мм с клеммой, СГЦ/V2A; соединитель клеммный Rd8-10, СГЦ; соединитель универсальный Rd8-10 / Rd8-10, СГЦ; молниеприемный стержень Rd16 L=2.000 мм, алюминий; клемма-держатель фальцевая вертикальная, СГЦ; фальцевая клемма Rd8-10, СГЦ; соединитель промежуточный Rd8-10 / Fl30-Rd16, СГЦ; стальной хомут крепления ленты; лента из нержавеющей стали V2A; держатель Rd16 c М8.

      ГТЭС Терешково

      Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

      Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

      Комплектующие:

      Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.


      Солнечногорский завод "ЕВРОПЛАСТ"

      Адрес объекта: Московская обл., Солнечногорский район, дер. Радумля.

      Вид работ: Проектирование системы молниезащиты промышленного здания.

      Комплектующие: производства фирмы OBO Bettermann.

      Выбор системы молниезащиты: Молниезащиту всего здания выполнить по III категории в виде молниеприемной сетки из горячеоцинкованного проводника Rd8 с шагом ячейки 12х12 м. Молниеприемный проводник уложить поверх кровельного покрытия на держатели для мягкой кровли из пластика с бетонным утяжелением. Обеспечить дополнительную защиту оборудования на нижнем уровне кровли установкой многократного стержневого молниеотвода, состоящего из стержневых молниеприемников. В качестве молниеприемника использовать стальной горячеоцинкованный прут Rd16 длиной 2000 мм.

      Московский международный Дом Музыки

      Адрес объекта: г. Москва, Космодамианская наб., д. 52, стр. 8

      Вид работ: монтаж системы обогрева лотка поверхностного водосбора и участков сливов на балконах 2-го и 3-го этажей

      Нагревательный элемент: саморегулирующийся нагревательный кабель Thermon RGS-2-60-PU.

      Производимые работы: Ревизия электрической системы водостоков: замер сопротивления изоляции силовых и нагревательных кабелей; проверка состояния распределительных коробок; проверка работоспособности шкафов управления. Изготовление и монтаж электрической системы обогрева: применялись регуляторы ETR и ETV фирмы OJ, автоматические выключатели и контакторы ABB, кабель нагревательный саморегулирующийся Thermon.

      Адрес объекта: Московская обл., поселок Икша

      Вид работ: Проектирование и монтаж систем внешней молниезащиты, заземления и уравнивания потенциалов.

      Комплектующие: B-S-Technic, Citel.

      Внешняя молниезащита: молниеприемные стержни из меди, медный проводник общей длиной 250 м, кровельные и фасадные держатели, соединительные элементы.

      Внутренняя молниезащита: Разрядник DUT250VG-300/G TNC, производство CITEL GmbH.

      Заземление: стержни заземления из оцинкованной стали Rd20 12 шт. с наконечниками, стальная полоса Fl30 общей длиной 65 м, крестовые соединители.


      Административно-офисное здание, г. Москва.

      Адрес объекта: г. Москва, Борисоглебский переулок.

      Вид работ: изготовление и монтаж системы внешней, внутренней молниезащиты и заземления.

      Комплектующие: DEHN+SOHNE Gmbh, J. Propster.

      Система внешней молниезащиты: комбинированная в виде молниеприемной сетки из медного проводника Rd8 с шагом ячейки 10х10 м и двух стержневых алюминиевых молниеприемников Rd16 длиной 2,5 м; молниеприемный проводник уложен на держатели для мягкой кровли из пластика с бетонным утяжелением. В качестве элементов крепления и соединения использованы биметаллические универсальные соединители Cu/Al Rd8-10/Rd8-10 и стеновые держатели из меди Rd8-10.

      Внутренняя молниезащита: 4-х полюсный разрядник перенапряжения компании J. Propster, тип сети TNS, 12.5 кА.

      Заземление: выполнено в виде отдельных очагов с применением глубинных заземлителей из оцинкованной стали Rd20, полосы заземления сечением 40х4 мм, соединителей Rd20хFl40/Rd8-10 и изолированного проводника Rd10/13.


      Территория "Ногинск-Технопарк", производственно-складской корпус с офисно-бытовым блоком

      Адрес объекта: Московская обл., Ногинский район.

      Вид работ: производство и монтаж системы внешней молниезащиты и заземления.

      Комплектующие: J. Propster.

      Внешняя молниезащита: На плоской кровле защищаемого здания уложена молниеприемная сетка с шагом ячейки 10 х10 м. Зенитные фонари защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм в количестве девяти штук.

      Токоотводы: Проложены в «пироге» фасадов здания в количестве 16 штук. Для токоотводов использован проводник из оцинкованной стали в ПВХ-оболочке диаметром 10 мм.

      Заземление: Выполнено в виде кольцевого контура c горизонтальным заземлителем в виде оцинкованной полосы 40х4 мм и глубинными стерженями заземления Rd20 длиной L 2х1500 мм.

    ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ

    2.1. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к I категории, должна выполняться отдельно стоящими стержневыми (рис. 1) или тросовыми (рис. 2) молниеотводами.

    Рис. 1. Отдельно стоящий стержневой молниеотвод:

    1 - защищаемый объект; 2 - металлические коммуникации

    Рис. 2. Отдельно стоящий тросовый молниеотвод. Обозначения те же, что и на рис. 1

    Указанные молниеотводы должны обеспечивать зону защиты типа А в соответствии с требованиями приложения 3. При этом обеспечивается удаление элементов молниеотводов от защищаемого объекта и подземных металлических коммуникаций в соответствии с ïï. 2.3, 2.4, 2.5.

    2.2. Выбор заземлителя защиты от прямых ударов молнии (естественного или искусственного) определяется требованиями п. 1.8.

    При этом для отдельно стоящих молниеотводов приемлемыми являются следующие конструкции заземлителей (табл. 2) :

    а) один (и более) железобетонный подножник длиной не менее 2 м или одна (и более) железобетонная свая длиной не менее 5 м;

    б) одна (и более) заглубленная в землю не менее чем на 5 м стойка железобетонной опоры диаметром не менее 0,25 м;

    в) железобетонный фундамент произвольной формы с площадью поверхности контакта с землей не менее 10 м 2 ;

    г) искусственный заземлитель, состоящий из трех и более вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м. Минимальные сечения (диаметры) электродов определяются по табл. 3.

    Таблица 2

    Таблица 3

    2.3. Наименьшее допустимое расстояние S в по воздуху от защищаемого объекта до опоры (токоотвода) стержневого или тросового молниеотвода (см. рис. 1 и 2) определяется в зависимости от высоты здания, конструкции заземлителя и эквивалентного удельного электрического сопротивления грунта r, Ом×м.

    Для зданий и сооружений высотой не более 30 м наименьшее допустимое расстояние S в, м, равно:

    при r < 100 Ом×м для заземлителя любой конструкции, приведенной в п. 2.2, S в = 3 м;

    при 100< r £ 1000 Ом×м:

    для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п. 2.2а, б, S в = 3+ l0 -2 (r-100);

    для заземлителей, состоящих из четырех железобетонных свай либо, подножников, расположенных в углах прямоугольника на расстоянии 3-8 м один от другого, или железобетонного фундамента произвольной формы с площадью поверхности контакта с землей не менее 70 м 2 или искусственных заземлителей, указанных в п. 2.2г, S в = 4 м.

    Для зданий и сооружений большей высоты определенное выше значение S в должно быть увеличено на 1 м в расчете на каждые 10 м высоты объекта сверх 30 м.

    2.4. Наименьшее допустимое расстояние S в от защищаемого объекта до троса в середине пролета (рис. 2) определяется в зависимости от конструкции заземлителя, эквивалентного удельного сопротивления грунта r, Ом×м, и суммарной длины l молниеприемников и токоотводов.

    При длине l < 200 м наименьшее допустимое расстояние S в1 , м, равно:

    при r < 100 Ом×м для заземлителя любой конструкции, приведенной в п. 2.2, S в1 =3,5 м;

    при 100 < r £ 1000 Ом×м:

    для заземлителей, состоящих из одной железобетонной сваи, одного железобетонного подножника или заглубленной стойки железобетонной опоры, длина которых указана в п. 2.2a, б, S в =3,5+3×10 -3 (r-100);

    для заземлителей, состоящих из четырех железобетонных свай или подножников, расположенных на расстоянии 3-8 м один от другого, или искусственных заземлителей, указанных в п. 2.2г, S в1 =4м.

    При суммарной длине молниеприемников и токоотводов l =200-300 м наименьшее допустимое расстояние S в1 должно быть увеличено на 2 м по сравнению с определенными выше значениями.

    2.5. Для исключения заноса высокого потенциала в защищаемое здание или сооружение но подземным металлическим коммуникациям (в том числе по электрическим кабелям любого назначения) заземлители защиты от прямых ударов молнии должны быть по возможности удалены от этих коммуникаций на максимальные расстояния, допустимые по технологическим требованиям. Наименьшие допустимые расстояния S з, (см. рис. 1 и 2) в земле между заземлителями защиты от прямых ударов молнии и коммуникациями, вводимыми в здания и сооружения 1 категории, должны составлять S з = S в + 2 (м), при S в по п. 2.3.

    2.6. При наличии на зданиях и сооружениях прямых газоотводных и дыхательных труб для свободного отвода в атмосферу газов, паров и взвесей взрывоопасной концентрации в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное полушарием радиусом 5 м.

    Для газоотводных и дыхательных труб, оборудованных колпаками или "гусаками", в зону защиты молниеотводов должно входить пространство над обрезом труб, ограниченное цилиндром высотой Н и радиусом R:

    для газов тяжелее воздуха при избыточном давлении внутри установки менее 5,05 кПа (0,05 ат) Н = 1 ì, R = 2 м; 5,05-25,25 кПа (0,05 - 0,25 ат) H = 2,5 м, R = 5 м,

    для газов легче воздуха при избыточном давлении внутри установки:

    до 25,25 кПа H = 2,5 м, R = 5 м;

    свыше 25,25 кПа H = 5 м, R = 5 м.

    Не требуется включать в зону защиты молниеотводов пространство над обрезом труб: при выбросе газов невзрывоопасной концентрации; наличии азотного дыхания; при постоянно горящих факелах и факелах, поджигаемых в момент выброса газов; для вытяжных вентиляционных шахт, предохранительных и аварийных клапанов, выброс газов взрывоопасной концентрации из которых осуществляется только в аварийных случаях.

    2.7. Для защиты от вторичных проявлений молнии должны быть предусмотрены следующие мероприятия:

    а) металлические конструкции и корпуса всего оборудования и аппаратов, находящиеся в защищаемом здании, должны быть присоединены к заземляющему устройству электроустановок, указанному в п. 1.7, или к железобетонному фундаменту здания (с учетом требований п. 1.8). Наименьшие допустимые расстояния в земле между этим заземлителем и заземлителями защиты от прямых ударов молнии должны быть в соответствии с п. 2.5;

    б) внутри зданий и сооружений между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстояние менее 10 см через каждые 20 м следует приваривать или припаивать перемычки из стальной проволоки диаметром не менее 5 мм или стальной ленты сечением не менее 24 мм 2 , для кабелей с металлическими оболочками или броней перемычки должны выполняться из гибкого медного проводника в соответствии с указаниями СНиП 3.05.06-85;

    в) в соединениях элементов трубопроводов или других протяженных металлических предметов должны быть обеспечены переходные сопротивления не более 0,03 Ом на каждый контакт. При невозможности обеспечения контакта с указанным переходным сопротивлением с помощью болтовых соединений необходимо устройство стальных перемычек, размеры которых указаны в подпункте "б".

    2.8. Защита от заноса высокого потенциала по подземным металлическим коммуникациям (трубопроводам, кабелям в наружных металлических оболочках или трубах) должна осуществляться путем их присоединения на вводе в здание или сооружение к арматуре его железобетонного фундамента, а при невозможности использования последнего в качестве заземлителя - к искусственному заземлителю, указанному в п. 2.2 г.

    2.9. Защита от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям должна осуществляться путем их заземления на вводе в здание или сооружение и на двух ближайших к этому вводу опорах коммуникации. В качестве заземлителей следует использовать железобетонные фундаменты здания или сооружения и каждой из опор, а при невозможности такого использования (см. п. 1.8) - искусственные заземлители, согласно п. 2.2г.

    2.10. Ввода здания воздушных линий электропередачи напряжением до 1 кВ, сетей телефона, радио, сигнализации должен осуществляться только кабелями длиной не менее 50 м с металлической броней или оболочкой или кабелями, проложенными в металлических трубах.

    На вводе в здание металлические трубы, броня и оболочки кабелей, в том числе с изоляционным покрытием металлической оболочки (например, ААШв, ААШп) , должны быть присоединены к железобетонному фундаменту здания или (см. п. 1.8) к искусственному заземлителю, указанному в п. 2.2г.

    В месте перехода воздушной линии электропередачи в кабель металлические броня и оболочка кабеля, а также штыри или крючья изоляторов воздушной линии должны быть присоединены к заземлителю, указанному в п. 2.2г. К такому же заземлителю должны быть присоединены штыри или крючья изоляторов на опоре воздушной линии электропередачи, ближайшей к месту перехода в кабель.

    Кроме того, в месте перехода воздушной линии электропередачи в кабель между каждой жилой кабеля и заземленными элементами должны быть обеспечены закрытые воздушные искровые промежутки длиной 2-3 мм èëè установлен вентильный разрядник низкого напряжения, например РВН-0,5.

    Защита от заноса высоких потенциалов по воздушным линиям электропередачи напряжением выше 1 кВ, вводимым в подстанции, размещенные в защищаемом здании (внутрицеховые или пристроенные), должна выполняться в соответствии с ПУЭ.

    2.11. Защита îò прямых ударов молнии зданий и сооружений II категории с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищаемом объекте стержневыми или тросовыми молниеотводами, обеспечивающими зону защиты в соответствии с требованиями табл. 1, п. 2.6 и приложения 3. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1:8 может быть использована также молниеприемная сетка при обязательном выполнении требований п. 2.6.

    Молниеприемная сетка должна быть выполнена из стальной проволоки диаметром не менее 6 мм и уложена на кровлю сверху или под несгораемые или трудносгораемые утеплитель или гидроизоляцию. Шаг ячеек сетки должен быть не более 6х6 м. Узлы сетки должны быть соединены сваркой. Выступающие над крышей металлические элементы (трубы, шахты, вентиляционные устройства) должны быть присоединены к молниеприемной сетке, а выступающие неметаллические элементы - оборудованы дополнительными молниеприемниками, также присоединенными к молниеприемной сетке.

    Установка молниеприемников или наложение молниеприемной сетки не требуется для зданий и сооружений с металлическими фермами при условии, что в их кровлях используются несгораемые или трудносгораемые утеплители и гидроизоляция.

    На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли, в. также соблюдены требования п. 2.6.

    Токоотводы от металлической кровли или молниеприемной сетки должны быть проложены к заземлителям не реже чем через 25 м по периметру здания.

    2.12. При прокладке молниеприемной сетки и установке молниеотводов на защищаемом объекте всюду, где это возможно, в качестве токоотводов следует использовать металлические конструкции зданий и сооружений (колонны, фермы, рамы, пожарные лестницы и т.п., а также арматуру железобетонных конструкции) при условии обеспечения непрерывной электрической связи в соединениях конструкций и арматуры с молниеприемниками и заземлителями, выполняемых, как правило, сваркой.

    Токоотводы, прокладываемые по наружным стенам зданий, следует располагать не ближе чем в 3м от входов или в местах, не доступных для прикосновения людей.

    2.13. В качестве заземлителей защиты от прямых ударов молнии во всех возможных случаях (см. п. 1.8) следует использовать железобетонные фундаменты зданий и сооружений.

    При невозможности использования фундаментов предусматриваются искусственные заземлители:

    при наличии стержневых и тросовых молниеотводов каждый токоотвод присоединяется к заземлителю, отвечающему требованиям п. 2.2г;

    при наличии молниеприемной сетки или металлической кровли по периметру здания или сооружения прокладывается наружный контур следующей конструкции:

    в грунтах с эквивалентным удельным сопротивлением r £ 500 Ом×м при площади здания более 250 м 2 выполняется контур из горизонтальных электродов, уложенных в земле на глубине не менее 0,5 м, а при площади здания менее 250 м 2 к этому контуру в местах присоединения токоотводов приваривается по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 м;

    в грунтах с удельным сопротивлением 500 < r £ 1000 Ом×м при площади здания более 900 м 2 достаточно выполнить контур только из горизонтальных электродов, а при площади здания менее 900 м 2 к этому контуру в местах присоединения токоотводов приваривается не менее двух вертикальных или горизонтальных лучевых электродов длиной 2-3 м на расстоянии 3-5 м один от другого.

    В зданиях большой площади наружный контур заземления может также использоваться для выравнивания потенциала внутри здания в соответствии с требованиями п. 1.9.

    Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановок в соответствии с указаниями п. 1.7.

    2.14. При установке отдельно стоящих молниеотводов расстояние от них по воздуху и в земле до защищаемого объекта и вводимых в него подземных коммуникаций не нормируется.

    2.15. Наружные установки, содержащие горючие и сжиженные газы и легковоспламеняющиеся жидкости, следует защищать от прямых ударов молнии следующим образом:

    а) корпуса установок из железобетона, металлические корпуса установок и отдельных резервуаров при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими;

    б) металлические корпуса установок и отдельных резервуаров при толщине металла крыши 4 мм и более, а также отдельные резервуары вместимостью менее 200 м 3 независимо от толщины металла крыши, а также металлические кожухи теплоизолированных установок достаточно присоединить к заземлителю.

    2.16. Для резервуарных парков, содержащих сжиженные газы, общей вместимостью более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горючие газы и легковоспламеняющиеся жидкости, при общей вместимости группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами.

    2.17. Очистные сооружения подлежат защите от прямых ударов молнии, если температура вспышки содержащегося в сточных водах продукта превышает его рабочую температуру менее чем на 10 °С. В зону защиты молниеотводов должно входить пространство, основание которого выходит за пределы очистного сооружения на 5 м в каждую сторону от его стенок, а высота равна высоте сооружения плюс 3 м.

    2.18. Если на наружных установках или в резервуарах (наземных или подземных), содержащих горючие газы или легковоспламеняющиеся жидкости, имеются газоотводные или дыхательные трубы, то они и пространство над ними (см. п. 2.6) должны быть защищены от прямых ударов молнии. Такое же пространство защищается над срезом горловины цистерн, в которые происходит открытый налив продукта на сливоналивной эстакаде. Защите от прямых ударов молнии подлежат также дыхательные клапаны и пространство над ними, ограниченное цилиндром высотой 2,5 м с радиусом 5 м.

    Для резервуаров с плавающими крышами или понтонами и зону защиты молниеотводов должно входить пространство, îãðàíè÷åííîå поверхностью, любая точка которой отстоит на 5 м от легковоспламеняющейся жидкости в кольцевом зазоре.

    2.19. Для наружных установок, перечисленных в пп. 2.15 - 2.18, в ткачестве заземлителей защиты от прямых ударов молнии следует по возможности использовать железобетонные фундаменты этих установок или (опор отдельно стоящих молниеотводов либо выполнять искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    К этим заземлителям, размещенным не реже чем через 50 м по периметру основания установки, должны быть присоединены корпуса наружных установок или токоотводы установленных на них молниеотводов, число присоединений - не менее двух.

    2.20. Для защиты зданий и сооружений от вторичных проявлений молнии должны быть предусмотрены следующие мероприятия:

    а) металлические корпуса всего оборудования и аппаратов, установленных в защищаемом здании (сооружении), должны быть присоединены к заземляющему устройству электроустановок, соответствующему указаниям п. 1.7, или к железобетонному фундаменту здания (с учетом требований п. 1.8) ;

    б) внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их сближения на расстояние менее 10 см через каждые 30 м должны быть выполнены перемычки в соответствии с указаниями п. 2.76;

    в) во фланцевых соединениях трубопроводов внутри здания следует обеспечить нормальную затяжку не менее четырех болтов на каждый фланец.

    2.21. Для защиты наружных установок от вторичных проявлений молнии металлические корпуса установленных на них аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    На резервуарах с плавающими крышами или понтонами необходимо устанавливать не менее двух гибких стальных перемычек между плавающими крышами или понтонами и металлическим корпусом резервуара или токоотводами установленных на резервуаре молниеотводов.

    2.22. Защита от заноса высокого потенциала по подземным коммуникациям осуществляется присоединением их на вводе в здание или сооружение к заземлителю электроустановок или защиты от прямых ударов молнии.

    2.23. Защита от заноса высокого потенциала по внешним наземным (надземным) коммуникациям выполняется путем их присоединения на вводе в здание или сооружение к заземлителю электроустановок или защиты от прямых ударов молнии, а на ближайшей к вводу опоре коммуникации - к ее железобетонному фундаменту. При невозможности использования фундамента (см. п. 1.8) должен быть установлен искусственный заземлитель, состоящий из одного вертикального или горизонтального электрода длиной не менее 5 м.

    2.24. Защита от заноса высокого потенциала по воздушным линиям электропередачи, сетям телефона, радио и сигнализации должна быть выполнена в соответствии с п. 2.10.

    2.25. Защита от прямых ударов молнии зданий и сооружений, относимых по устройству молниезащиты к III категории, должна выполняться одним из способов, указанных в п. 2.11, с соблюдением требований пп. 2.12 и 2.14.

    При этом в случае использования молниеприемной сетки шаг ее ячеек должен быть не более 12 х 12м.

    2.26. Во всех возможных случаях (см. п. 1.7) в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты зданий и сооружений.

    При невозможности их использования выполняют искусственные заземлители:

    каждый токоотвод от стержневых и тросовых молниеприемников должен быть присоединен к заземлителю, состоящему минимум из двух вертикальных электродов длиной не менее 3 м, объединенных горизонтальным электродом длиной не менее 5 м;

    при использовании в качестве молниеприемников сетки или металлической кровли по периметру здания в земле на глубине не менее 0,5 м должен быть проложен наружный контур, состоящий из горизонтальных электродов. В грунтах с эквивалентным удельным сопротивлением 500 < r £ 1000 Ом×м и при площади здания менее 900 м 2 к этому контуру в местах присоединения токоотводов следует приваривать по одному вертикальному или горизонтальному лучевому электроду длиной 2-3 м.

    Минимально допустимые сечения (диаметры) электродов искусственных заземлителей определяются по табл. 3.

    В зданиях большой площади (шириной более 100 м) наружный контур заземления может также использоваться для выравнивания потенциалов внутри здания в соответствии с требованиями п. 1.9.

    Во всех возможных случаях заземлитель защиты от прямых ударов молнии должен быть объединен с заземлителем электроустановки, указанным в гл. 1.7 ПУЭ.

    2.27. При защите строений для крупного рогатого скота и конюшен отдельно стоящими молниеотводами их опоры и заземлители следует располагать не ближе чем в 5м от входа в строения.

    При установке молниеприемников или укладке сетки на защищаемом стрости в качестве заземлителей следует использовать железобетонный фундамент (см. п. 1.8) или наружный контур, проложенный по периметру строения под асфальтовой или бетонной отмосткой в соответствии с указаниями п. 2.26.

    К заземлителям защиты от прямых ударов молнии должны быть присоединены находящиеся внутри строения металлические конструкции, оборудование и трубопроводы, а также устройства выравнивания электрических потенциалов.

    2.28. Защита от прямых ударов молнии металлических скульптур и обелисков, указанных в п. 17 табл. 1, обеспечивается присоединением их к заземлителю любой конструкции, приведенной в п. 2.26.

    При наличии часто посещаемых площадок вблизи таких сооружений большой высоты должно быть выполнено выравнивание потенциала в соответствии с п. 1.10.

    2.29. Молниезащита наружных установок, содержащих горючие жидкости с температурой вспышки паров выше 61 °С и соответствующих п. 6 табл. 1, должна быть выполнена следующим образом:

    а) корпуса установок из железобетона, а также металлические корпуса установок и резервуаров при толщине крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом сооружении или отдельно стоящими;

    б) металлические корпуса установок и резервуаров при толщине крыши 4 мм и более следует присоединять к заземлителю. Конструкции заземлителей должны отвечать требованиям п. 2.19.

    2.30. Расположенные в сельской местности небольшие строения с неметаллической кровлей, соответствующие указанным в пп. 5 и 9 табл. 1, подлежат защите от прямых ударов молнии одним из упрощенных способов:

    а) при наличии на расстоянии 3-10 м от строения деревьев, в 2 раза и более превышающих его высоту с учетом всех выступающих на кровле предметов (дымовые трубы, антенны и т.д.), по стволу ближайшего из деревьев должен быть проложен токоотвод, верхний конец которого выступает над кроной дерева не менее чем на 0,2 м. У основания дерева токоотвод должен быть присоединен к заземлителю;

    б) если конек кровли соответствует наибольшей высоте строения, над ним должен быть подвешен тросовый молниеприемник, возвышающийся над коньком не менее чем на 0,25 м. Опорами для молниеприемника могут служить закрепленные на стенах строения деревянные планки. Токоотводы прокладывают с двух сторон по торцевым стенам строения и присоединяют к заземлителям. При длине строения менее 10 м токоотвод и заземлитель могут быть выполнены только с одной стороны;

    в) при наличии возвышающейся над всеми элементами кровли дымовой трубы над ней следует установить стержневой молниеприемник высотой не менее 0,2 м, проложить по кровле и стене строения токоотвод и присоединить его к заземлителю;

    г) при наличии металлической кровли ее следует хотя бы в одной точке присоединить к заземлителю; при этом токоотводами могут служить наружные металлические лестницы, водостоки и т.д. К кровле должны быть присоединены все выступающие на ней металлические предметы.

    Во всех случаях следует применять молниеприемники и токоотводы минимальным диаметром 6 мм, а в качестве заземлителя - один вертикальный или горизонтальный электрод длиной 2-3 м минимальным диаметром 10 мм, уложенный на глубине не менее 0,5 м.

    Соединения элементов молниеотводов допускаются сварные и болтовые.

    2.31. Защита от прямых ударов молнии неметаллических труб, башен, вышек высотой более 15 м должна быть выполнена путем установки на этих сооружениях при их высоте:

    до 5Ом - одного стержневого молниеприемника высотой не менее 1 м;

    от 50 до 150 м - двух стержневых молниеприемников высотой не менее 1 м, соединенных на верхнем торце трубы;

    более 150 м - не менее трех стержневых молниеприемников высотой 0,2 - 0,5 м или по верхнему торцу трубы должно быть уложено стальное кольцо сечением не менее 160 мм 2 .

    В качестве молниеприемника может также использоваться защитный колпак, устанавливаемый на дымовой трубе, или металлические конструкции типа антенн, устанавливаемые на телебашнях.

    При высоте сооружения до 50 м от молниеприемников должна быть предусмотрена прокладка одного токоотвода; при высоте сооружения более 50 м токоотводы должны быть проложены не реже чем через 25 м по периметру основания сооружения, их минимальное количество два.

    Сечения (диаметры) токоотводов должны удовлетворять требованиям табл. 3, а в зонах с высокой загазованностью или агрессивными выбросами в атмосферу диаметры токоотводов должны быть не менее 12 мм.

    В качестве токоотводов могут использоваться ходовые металлические лестницы, в том числе с болтовыми соединениями звеньев, и прочие вертикальные металлические конструкции.

    На железобетонных трубах в качестве токоотводов следует использовать арматурные стержни, соединенные по высоте трубы сваркой, скруткой или внахлест; при этом прокладка наружных токоотводов не требуется. Соединение молниеприемника с арматурой должно выполняться минимум в двух точках.

    Все соединения молниеприемников с токоотводами должны быть выполнены сваркой.

    Для металлических труб, башен, вышек установка молниеприемников и прокладка токоотводов не требуется.

    В качестве заземлителей защиты от прямых ударов молнии металлических и неметаллических труб, башен, вышек следует использовать их железобетонные фундаменты согласно п. 1.8. При невозможности использования фундаментов на каждый токоотвод должен быть предусмотрен искусственный заземлитель из двух стержней, соединенных горизонтальным электродом (см. табл. 2); при периметре основания сооружения не более 25 м искусственный заземлитель может быть выполнен в виде горизонтального контура, проложенного на глубине не менее 0,5 м и выполненного из электрода круглого сечения (см. табл. 3). При использовании в качестве токоотводов арматурных стержней сооружения их соединения с искусственными заземлителями должны выполняться не реже чем через 25 м ври минимальном количестве присоединений, равном двум.

    При возведении неметаллических труб, башен, вышек металлоконструкции монтажного оборудования (грузопассажирские и шахтные подъемники, кран-укосина и др.) должны быть присоединены к заземлителям. В этом случае временные мероприятия по молниезащите на период строительства могут не выполняться. 22

    2.32. Для защиты от заноса высокого потенциала по внешним наземным (надземным) металлическим коммуникациям их необходимо на вводе в здание или сооружение присоединить к заземлителю электроустановок или защиты от прямых ударов молний.

    2.33. Защита от заноса высокого потенциала по воздушным линиям электропередачи напряжением до 1 кВ и линиям связи и сигнализации должна выполняться в соответствии с ПУЭ и ведомственными нормативными документами.

    «Зеленые» облигации в настоящее время являются основным финансовым решением частного бизнеса для перехода мира в низкоуглеродное будущее. Тем не менее, в развивающемся мире «зеленый» рынок все еще находится на начальной стадии, что открывает большие возможности для инвесторов.

    Сравнение элегазовых и вакуумных выключателей для среднего напряжения

    Опыт разработки выключателей среднего напряжения, как элегазовых, так и вакуумных, создали достаточное свидетельство того, что ни одна их этих двух технологий, в общем, значительно не превосходит другую. Принятие решения в пользу той или другой технологии стимулируют экономические факторы, предпочтения пользователей, национальные "традиции", компетенция и специальные требования.

    КРУ среднего напряжения и LSС

    Коммутационное оборудование среднего напряжения в металлическом корпусе и категории потери эксплуатационной готовности (LSС) - категории, классификация, примеры.

    Какие факторы повлияют на будущее производителей трансформаторов?

    Независимо от того, производите ли вы или продаете электроэнергию, или осуществляете поставки силовых трансформаторов за пределы страны, вы вынуждены бороться с конкуренцией на глобальном рынке. Существует три основных категории факторов, которые окажут влияние на будущее всех производителей трансформаторов.

    Будущее коммутационного оборудования среднего напряжения

    Умные сети стремятся оптимизировать связи между спросом и предложением электроэнергии. При интеграции большего количества распределенных и возобновляемых источников энергии в одну сеть. Готово ли коммутационное оборудование среднего напряжения к решению этих задач, или необходимо его развивать дальше?

    В поисках замены элегазу

    Элегаз, обладает рядом полезных характеристик, применяется в различных отраслях, в частности, активно используется в секторе электричества высокого напряжения. Однако элегаз обладает и значительным недостатком - это мощный парниковый газ. Он входит в список шести газов, включенных в Киотский протокол.

    Энергетическая отрасль имеет на своих руках очень большую проблему: профессионалы, родившиеся в период с середины 1940-х и до середины 1960-х годов, приближаются к пенсионному возрасту. И встает очень большой вопрос: кто их заменит?

    Преимущества и типы КРУЭ

    Электрическую подстанцию желательно размещать в центре нагрузки. Однако, часто, основным препятствием такого размещения подстанции является требуемое для нее пространство. Эта проблема может быть решена за счет применения технологии КРУЭ.

    Вакуум в качестве среды гашения дуги

    В настоящее время в средних напряжениях технология гашения дуги в вакууме доминирует по отношению к технологиям, использующим воздух, элегаз, или масло. Обычно, вакуумные выключатели более безопасны, и более надежны в ситуациях, когда число нормальных операций и операций, обслуживающих короткие замыкания, очень велико.

    Выбор компании и планирование тепловизионного обследования

    Если для вас идея тепловизионного обследования электрического оборудования является новой, то планирование, поиски исполнителя, и определение преимуществ, которые может дать эта технология, вызывают растерянность.

    Наиболее известные способы изолирования высокого напряжения

    Приводены семь наиболее распространенных и известных материалов, применяемых в качестве высоковольтной изоляции в электрических конструкциях. Для них указываются аспекты, требующие специального внимания.

    Пять технологий увеличения эффективности систем передачи и распределения электроэнергии

    Если обратить внимание на меры, обладающие наивысшим потенциалом в улучшении энергоэффективности, то на первое место неизбежно выходит передача электроэнергии.

    Преодолевая барьеры применения энергии из возобновляемых источников

    Несмотря на определенные достижения в последние годы, энергия из возобновляемых источников составляет весьма скромную часть современных услуг по предоставления энергии по всему миру. Почему это так?

    В Голландию приходят самовосстанавливающиеся сети

    Рост экономики и увеличение численности населения приводят к увеличению спроса на электроэнергию, вместе c жесткими ограничениями на качество и надежность поставок энергии, растут усилия на обеспечение целостности сети. В случае отказа сетей, перед их владельцами стоит задача минимизировать последствия этих отказов, снижая время выхода из строя, и количество отключенных от сети потребителей.

    Оборудование высоковольтных выключателей для каждой компании связано со значительными инвестициями. Когда встает вопрос об их обслуживании или замене, то необходимо рассматривать все возможные варианты.

    Пути разработки безопасных, надежных и эффективных промышленных подстанций

    Рассмотрены основные факторы, которые следует учитывать при разработке электрических подстанций для питания промышленных потребителей. Обращено внимание на некоторые инновационные технологии, которые могут улучшить надежность и эффективность подстанций.

    Для проведения сравнения применения вакуумных выключателей или контакторов с плавкими предохранителями в распределительных сетях напряжения 6... 20 кВ, необходимо понимание основных характеристик каждой из этой технологии выключения.

    Мониторинг передачи электроэнергии в реальном времени

    Спрос на электроэнергию продолжает расти и перед компаниями, передающими электроэнергию, возникает задача роста пропускных мощностей их сетей. Решить ее можно строительством новых и модернизацией старых линий. Но есть еще один способ решения, он заключается в применении датчиков и технологии мониторинга сети.

    Генераторные выключатели переменного тока

    Играя важную роль в защите электростанций, генераторные выключатели дают возможность более гибкой эксплуатации и позволяют находить эффективные решения для сокращения инвестиционных затрат.

    Преимущества постоянного тока в высоковольтных линиях

    Несмотря на большее распространение переменного тока при передаче электрической энергии, в ряде случаев использование постоянного тока высокого напряжения предпочтительнее.

    Материал, способный сделать солнечную энергию «удивительно дешевой»

    Солнечные батареи, изготовленные из давно известного и более дешевого, чем кремний материала, могут генерировать такое же количество электрической энергии, как и используемые сегодня солнечные панели.

    Безопасность и экологичность изоляции распределительного оборудования

    Целью настоящей статьи является освещение потенциальных опасностей для персонала и окружающей среды, связанных с тем же самым оборудованием, но не находящимся под напряжением. Статья концентрируется на коммутационном и распределительном оборудовании на напряжения свыше 1000 В.