Светодиодная лента с wifi управлением. Подключение и управление светодиодной лентой к arduino. Сечение проводов для подключения светодиодных лент


Управление RGB светодиодом с компьютера через USB порт (virtual COM port). Управление светодиодной лентой с компьютера

Управление светодиодной RGB лентой через arduino

В число осветительных приборов давно вошли многоцветные светодиодные ленты RGB. Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328

Внешний вид Arduino Pro MiniВнешний вид Arduino UnoВнешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.
к содержанию

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле

Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния - включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

К содержанию

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта, найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.
к содержанию

Видеоинструкция

lampaexpert.ru

Схема подключения и управление светодиодной лентой с помощью Arduino

Arduino - компьютерная платформа, используемая при построении простых систем автоматики, небольшая плата со встроенным микропроцессором и оперативной памятью. Управление светодиодной лентой через Arduino - один из способов ее применения.

Процессор ATmega управляет программой-скетчем, контролируя многочисленные дискретные выводы, аналоговые и цифровые входы/выходы, ШИМ-контроллеры.

Принцип действия Arduino

«Сердце» платы Arduino - микроконтроллер, к которому подключаются датчики, управляющие элементы. Заданная программа (называется «скетч») позволяет управлять электродвигателями, светодиодами в лентах и других осветительных приборах, даже используется для контроля над другой платой Arduino через протокол SPI. Контроль осуществляется при помощи пульта ДУ, Bluetooth-модуля или сети Wi-Fi.

Для программирования используется открытый исходный код на ПК. Для загрузки программ управления можно пользоваться USB-коннектором.

Принцип управления нагрузкой через Arduino

На плате Arduino есть порты двух типов - цифровые и аналоговые. Первый имеет два состояния - «0» и «1» (логические ноль и единица). При подключении светодиода к плате в одном состоянии он будет светиться, в другом - нет.

Аналоговый вход, по сути, - ШИМ-контроллер, регистрирующий сигналы частотой около 500 Гц. Такие сигналы подаются на контроллер с настраиваемой скважностью. Аналоговый вход позволяет не просто включать или отключать управляемый элемент, но и изменять значение тока (напряжения).

При прямом подключении через порт используйте слабые светодиоды, добавляя к ним ограничительный резистор. Более мощная нагрузка выведет его из строя. Для организации управления светодиодной лентой и другим осветительным прибором примените электронный ключ (транзистор).

Подключение к Arduino

Прямое подключение светодиодной ленты к Arduino уместно только в случае применения слабых LED-диодов. Для светодиодной ленты между ней и платой необходимо установить дополнительные электротехнические элементы.

Через реле

Подключите реле к плате Arduino через цифровой выход. Управляемая полоса может иметь одно из двух состояний - включения или выключения. Если нужно организовать управление RGB-лентой, понадобятся три реле.

Значение тока, контролируемое данным устройством, ограничивается мощностью катушки. Если мощность слишком мала, элемент не сможет замыкать большие контакты. Для наиболее высоких мощностей примените релейные сборки.

С помощью биполярного транзистора

Если нужно повысить ток или напряжение на выходе, подключите биполярный транзистор. При его выборе ориентируйтесь на ток нагрузки. Ток управления не превышает 20 мА, поэтому добавьте резистор на 1 – 10 кОм для ограничения тока за счет сопротивления.

Обратите внимание! В идеале нужно пользоваться транзистором n-p-n типа на базе общего эмиттера. Если требуется большое усиление, примените транзисторную сборку.

С помощью полевого транзистора

Вместо биполярных транзисторов для управления светодиодными лентами возьмите полевые (сокращенно - МОП). Разница между ними связана с принципом управления: биполярные изменяют ток, полевые - напряжение на затворе. Благодаря этому небольшой ток затвора управляет большой нагрузкой (десятками ампер).

Обязательно добавьте к схеме резистор для ограничения тока. Из-за высокой чувствительности к помехам к выходу контроллера подключается масса резистора на 10 кОм.

С помощью плат расширения

Если нет желания использовать реле и транзисторы, можно купить целые блоки - платы расширения. К ним относятся Wi-Fi, Bluetooth, эквалайзер, драйвер и т. д., которые необходимы для управления нагрузкой разных мощностей и напряжений. Это могут быть как одноканальные элементы, которые подойдут монохромным лентам, так и многоканальные (для управления цветными RGB-лентами).

Различные программы

Библиотеки с программами для платы Arduino можно загрузить с официального сайта или найти в Интернете на других информационных ресурсах. Если есть навыки, можете даже самостоятельно написать скетч-программу (исходный код). Для сбора электрической цепи не требуется каких-то специфичных знаний.

Варианты применения системы под управлением Arduino:

  1. Освещение. Наличие датчика позволит задать программу, в соответствии с которой свет в комнате либо появляется сразу, либо плавно включается параллельно заходу солнца (с увеличением яркости). Для включения можно использовать Wi-Fi, телефон и интеграцию в систему «Умный дом».
  2. Освещение коридора и лестничных площадок. Arduino позволит организовать освещение каждой детали (к примеру, ступени) отдельно. Добавьте в плату датчик движения, чтобы адресные светодиоды загорались последовательно в зависимости от того места, где зафиксировано движение объекта. Если движения нет, диоды будут гаснуть.
  3. Светомузыка. Воспользуйтесь фильтрами и подайте на аналоговый вход звуковые сигналы, чтобы на выходе организовать светомузыку (эквалайзер).
  4. Модернизация компьютера. Некоторые датчики позволят создать зависимость цвета светодиодов от температуры процессора, его загрузки, нагрузки на оперативную память. Используется протокол DMX 512.

Микросхемы Arduino расширяют возможности применения монохромных и многоканальных (RGB) светодиодных лент. Помимо слияния различных цветов, образования сотен тысяч оттенков сможете создать неповторимые эффекты - затухание при заходе солнца, периодическое включение/выключение при фиксации движения и многое другое.

Управление светодиодной лентой через Arduino - схемы плавного включения и выключения освещения

220.guru

Управление RGB светодиодом с компьютера через USB порт

Управление RGB светодиодом с компьютера

// Для управления цветом светодиода используем 3 ШИМ порта

int bluePin = 9;

int greenPin = 10;

int redPin = 11;

// Команды управления светодиодом. Цвета и выключение

String COLOR_RED = "red";

String COLOR_BLUE = "blue";

String COLOR_GREEN = "green";

String COLOR_OFF = "off";

// Инициализация последовательного порта. Устанавливаем скорость 9600 бит/c

Serial.begin(9600);

// Инициализируем выходы для нашего RGB светодиода

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

// В переменную color считываем команду с цветом от ПК

// Проверяем, доступны ли данные с ПК

int check = Serial.available();

// если есть, то считываем как строку

if (check > 0) {

color = Serial.readString();

// Сравниваем поступившую команду с описанными ранее и включаем необходимый цвет на RGB LED

if (COLOR_RED.equalsIgnoreCase(color)) {

setColor(255, 0, 0);

} else if (COLOR_GREEN.equalsIgnoreCase(color)) {

setColor(0, 255, 0);

} else if (COLOR_BLUE.equalsIgnoreCase(color)) {

setColor(0, 0, 255);

} else if (COLOR_OFF.equalsIgnoreCase(color)) {

setColor(0, 0, 0);

} else if(check > 0){

// Если команда не распознана, сообщаем пользователю подсказку.

Serial.println("Send command is bad! Send please \"RED\" \"GREEN\" \"BLUE\" or \"OFF\"!");

// Функция включения необходимого цвета на нашем RGB светодиоде

void setColor(int red, int green, int blue) {

analogWrite(redPin, red);

analogWrite(greenPin, green);

analogWrite(bluePin, blue);

gearise.ru

Управление светодиодными источниками света по протоколам SPI и DMX

Эта статья посвящена особому классу управляемых светодиодных источников света, к которому относятся пиксельные светодиодные ленты «Бегущий огонь», управляемый «гибкий неон» и флеш-модули. В них, как и в обычных многоцветных RGB лентах и модулях, используются трехцветные светодиоды с красным (Red), зеленым (Green) и синим (Blue) цветом свечения.

Принципиальное отличие заключается в том, что помимо светодиодов, непосредственно на ленту или внутрь модулей, устанавливаются микросхемы управления. Благодаря этому, появляется возможность управлять не всеми светодиодами одновременно, а каждым светодиодом или группой из нескольких светодиодов отдельно. Такая группа называется пиксель. Количество светодиодов в пикселе зависит от типа ленты. Светодиодные ленты и модули с напряжением питания 12В обычно имеют по 3 RGB светодиода в одном пикселе, с питанием 24В – по 6 светодиодов на пиксель. В светодиодных лентах и модулях с напряжением питания 5В, управление обычно осуществляется каждым светодиодом отдельно, причем микросхема управления может быть встроена в корпус самого RGB светодиода.

Большинство контроллеров позволяют устанавливать длину подключенной ленты и выбирать последовательность RGB каналов на ленте (RGB, RBG, BGR и т.д.). Это необходимо чтобы цвет, заданный в программе, соответствовал воспроизводимому цвету, красный цвет был красным, зеленый – зеленым и синий - синим.

Цифровой сигнал, сформированный пиксельным контроллером, поступает на микросхему, установленную на ленте или во флеш- модуле, и представляющую собой специализированный микроконтроллер, который принимает цифровой сигнал, декодирует его и управляет яркостью и цветом свечения светодиодов. Часто эти микроконтроллеры называют «чип» или «драйвер». В данной статье, для однозначного понимания, будем называть их «драйвер».

Тип используемых драйверов обязательно указывается в параметрах светодиодных лент или флеш-модулей. Знать этот тип необходимо для того, чтобы подобрать и правильно настроить контроллер, который будет управлять лентой или модулями.

Большинство контроллеров могут работать с несколькими типами драйверов. Перечень драйверов, с которыми работает тот или иной контроллер, приводится в его технических характеристиках, а также в программном обеспечении к контроллеру, если таковое используется для создания собственных световых программ. Поскольку ведется постоянная работа по совершенствованию программного обеспечения и контроллеров, списки совместимых драйверов периодически пополняются.

Применяемые драйверы разделяются на два принципиально разных класса. В соответствии с этим на два класса можно разделить и светодиодных ленты, флеш-модули и «гибкий неон».

  • Первый класс (более обширный и чаще используемый) - это драйверы использующие цифровой интерфейс SPI (Serial Peripheral Interface - последовательный периферийный интерфейс),
  • Второй – драйверы, использующие цифровой протокол управления DMX (Digital Multiplex – цифровое мультикплексирование).

Оба класса драйверов имеют свои преимущества, о которых расскажем далее. Рассмотрим более подробно оба типа используемых протоколов.

Использование протокола SPI.

Особенностью светодиодных лент и модулей, использующих протокол управления SPI, является последовательная передача данных от пикселя к пикселю по всей длине подключенной цепочки. Цифровая управляющая последовательность формируется контроллером и подается на первый пиксель. Драйвер этого пикселя «забирает» первую принятую информации себе, а оставшуюся цифровую последовательность передает на следующий пиксель. Второй драйвер также «отрезает» себе начальную часть информации и передает оставшееся на третью микросхему, и т.д. При таком способе передачи нет необходимости присваивать микросхемам адреса. Адресом, по сути, является место расположения пикселя в общей последовательности.

Управление по протоколу SPI может осуществляться с использованием двух сигнальных проводов (DATA и CLK) или только одного (DATA). Для лент и модулей с двумя сигналами управления характерна более стабильная работа на высоких скоростях обмена и, соответственно меньшая задержка распространения информации и более высокая частота обновления. Сколько проводов управления используется в конкретном случае, зависит от типа драйверов на светодиодной ленте или в модулях. Ниже приведена таблица с основными параметрами SPI драйверов, используемых в оборудовании Neoncolor.

Тип драйвера ТМ1804 ТМ1812 WS2801 WS2811 WS2812 LPD6803 UCS1903 TLS3001
Использование в оборудовании Ленты/ модули Ленты Модули Ленты/ модули Ленты/ модули Модули Модули Модули
Напряжение питания лент и модулей 12/24В 12В 5/12В 5/12/24В 5/12/24В 5/12В
Количество RGB светодиодов в пикселе для лент 1 или 3 шт. 1, 2 или 3 шт. - 3 шт. 1 шт. - - -
Сигналы управления DATA DATA DATA, CLK DATA DATA DATA, CLK DATA DATA
Исполнение микросхемы В отдельном корпусе В отдельном корпусе В отдельном корпусе В отдельном корпусе Встроена в светодиод В отдельном корпусе В отдельном корпусе В отдельном корпусе
Количество обслуживаемых драйвером пикселей 1 (3 канала) 4 (12 каналов) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала) 1 (3 канала)
Количество цветов 16 млн 16 млн 16 млн 16 млн 16 млн 32768 16 млн 4096

С появление новых драйверов, список используемых микросхем пополняется.

Ниже приведены структурные схемы SPI лент и их подключение к контроллеру.

Рис.1. Структурная схема SPI светодиодной ленты с двумя линиями управления (DATA и CLK)

Рис.2. Структурная схема SPI светодиодной ленты с одной линией управления (DATA)

Использование протокола DMX.

Отличительные особенности светодиодных лент и флеш-модулей, использующих DMX управление – параллельная подача сигнала управления на все модули. Как видно на структурной схеме, приведенной на рис.3., цифровой сигнал с выхода контроллера подается одновременно на все драйверы.

Рис.3. Структурная схема DMX светодиодной ленты (сигнал ADR используется только при записи адресов DMX каналов)

В такой системе выход из строя одного драйвера не вызывает отказ всех последующих пикселей. Правда, чтобы информация попала именно в тот драйвер, которому она предназначена, драйверы должны иметь свой персональный адрес. Если драйверы в последовательной цепочке поменять местами, поменяются и пикселы в программе, в результате световой эффект будет нарушен.

В оборудовании компании Neoncolor используются современные DMX драйверы WS2821. Справедливости ради, стоит отметить, что эти драйверы используют протокол DMX, но не используют полноценный симметричный интерфейс, характерный для работы систем стандарта DMX. Для передачи сигнала используется сигнал DATA+ и не используется DATA-.

DMX ленты, модули и «гибкий неон» поставляются с записанными при производстве DMX адресами. По умолчанию, адресация пикселей каждой катушки ленты (цепочки модулей или катушки «гибкого неона») начинается с 1-го адреса и нумеруется по порядку до последнего пикселя. Если в одну линию соединяется несколько катушек или отрезков, требуется произвести запись адресов заново. Для этого вначале выполняются все соединения отрезков ленты или модулей, а затем производится запись адресов. При этом адреса автоматически последовательно записываются во все подключенные пиксели, начиная от ближайшего к контроллеру. Такая запись исключает дублирование адресов и обеспечивает правильное выполнение световых эффектов.

Для записи адресов в DMX драйверы используются специализированные редакторы адресов, например, DMX-WS2821. Некоторые пиксельные контроллеры, такие как DMX K-1000D или DMX K-8000D, имеют встроенный редактор адресов.

При записи адресов используется провод, обозначенный ADR (ADI, ADIN). После выполнения записи, при воспроизведении световых программ, вход ADI драйверов не используется. Если Ваш контроллер не имеет встроенного редактора адресов и не имеет выхода для подключения провода ADI, этот провод должен быть соединен с общим проводом GND, что предотвратит воздействие на него внешних помех и наводок.

Подводя итог сравнению цифровых интерфейсов SPI и DMX, используемых при управлении светодиодными пикселями, приведем положительные стороны обоих.

Плюсы светодиодных лент и модулей, использующих интерфейс SPI:

  • нет необходимости записывать адрес и, соответственно, приобретать редактор адресов;
  • нет привязки пиксела к месту установки в общей цепи, т.е. перестановка модулей или отрезков ленты не приводит к нарушению рисунка воспроизводимой программы;
  • возможность подключения на одну линию более 1024 пикселей, при условии поддержки такого количества контроллером и при продуманном и качественно выполненном монтаже.

Плюсы светодиодных лент, модулей и «гибкого неона», использующих интерфейс DMX:

  • совместимость с оборудованием, использующим стандартный протокол управления DMX512, например, DMX пульты или оборудование системы MADRIX.
  • при отказе одного пикселя, все последующие пиксели продолжают работать, картинка не искажается.

При управлении от оборудования, работающего по стандартному протоколу DMX512 , на одну DMX шину может быть подключено максимум 170 пикселей (170 пикселей по 3 адреса, итого 510 адресов). При использовании специализированных пиксельных контроллеров для светодиодных лент и флеш-модулей, это количество зависит от типа самого контроллера и обычно составляет 1024 пикселя на один порт.

В заключении статьи приведем схему подключения нескольких светодиодных лент «Бегущий огонь» (Рис.4.) и дадим несколько рекомендаций, которые помогу правильно спроектировать и смонтировать систему.

Рис.4. Соединение нескольких светодиодных лент.

  • При подключении пикселей соблюдайте направление передачи данных, обозначенное стрелками, нанесенными на ленте или флеш-модулях. Стрелки должны указывать в направлении от контроллера. Также, можно ориентироваться на маркировку, нанесенную на ленту или модули. Контакты с маркировкой DI или DIN – вход, подключаются к выходу контроллера, контакты с маркировкой DO или DOUT – выход, подключаются к следующим пикселям.
  • Никогда не подавайте на ленту напряжение, превышающее номинальное напряжение питания, например, подключение ленты с напряжением питания 5В к источнику питания с выходным напряжением 12В неминуемо приводит к выходу ленты из строя.
  • Будьте внимательны при подключении. Подача напряжения питания на вход данных или ошибка с полярностью подключения выводов питания («плюс» и «минус» источника питания) может привести к выходу ленты из строя.
  • Не подключайте последовательно питание двух и более лент (5 или 2.5 м, в зависимости от типа лент). Лента и «гибкий неон» поставляются на катушках и всегда имеют максимально допустимую длину. При соединении последовательно нескольких лент, провода DATA и GND подключаются с выхода одной ленты ко входу другой, а питание подается на каждую ленту отдельно. Если для питания нескольких лент используется один мощный источник питания, от него к каждой ленте необходимо провести отдельный кабель. При этом следует учитывать, что ток потребления ленты может достигать больших значений и это приводит к падению напряжения на питающих проводах. Помимо изменения цвета свечения, такое падение может вызывать сбои в управлении пикселями. Сечение питающего кабеля рассчитывается так же, как и для стандартных светодиодных лент, исходя из потребляемой мощности ленты и длины кабеля. Для расчета можно воспользоваться калькулятором сечения провода на нашем сайте. Часто, вместо одного мощного источника питания, бывает удобнее использовать отдельные блоки небольшой мощности для каждой ленты, разместив их в непосредственной близости к ленте. При таком подключении проблем, вызываемых падением напряжения, не возникает.
  • При использовании лент высокой плотности и с низким напряжением питания (5 вольт), подавайте питание на ленту с обоих концов. На таких лентах, из-за большого потребляемого тока и падения напряжения на дорожках ленты, цвет свечения светодиодов в начале и конце ленты может отличаться. Из-за недостатка напряжения питания на конце ленты могут появиться сбои управления светодиодами. Эти эффект особенно выражены при включении статического белого цвета на всех светодиодах. В таком режиме потребляемый лентой ток максимальный. На некоторых контроллера, для устранения подобного эффекта, автоматически снижается яркость свечения на белом цвете при питании контроллера напряжением 5 вольт.
  • Напряжение на управляющих линиях DATA и CLK не зависит от типа контроллера и его напряжения питания. На всех контроллерах оно может принимать только два значения – 0 или 5 вольт (уровни TTL). Из этого следует, что не обязательно питать контроллер и ленту от источников питания с одинаковым выходным напряжением. Например, можно использовать ленту с питанием 5 вольт и контролер с напряжением питания 12 вольт. Главное, чтобы выходное напряжение блока питания ленты соответствовало подключаемой ленте, а выходное напряжения блока питания контроллера соответствовало подключаемому контроллеру. Если напряжения питания контроллера и ленты одинаковые, можно использовать один общий источник питания.
  • Для передачи сигналов управления от контроллера к ленте используйте экранированный кабель. Возможно применение кабеля для компьютерных сетей UTP (витая пара). Длина кабеля управления между контроллером и лентой не должна превышать 10 м. При необходимости передать сигнал управления на большее расстояние (до 200м), используйте конверторы сигнала TTL в RS485 со стороны контроллера RS485 в TTL со стороны ленты. Для передачи и приема сигнала по кабелю можно использовать конвертер Th3010-485.
  • При количестве пикселей в системе более 1024, используйте контроллеры с несколькими выходными портами. Равномерно распределяйте пиксели между портами контроллера.

www.neoncolor.ru

Подключение светодиодных rgb-лент к контроллеру и управление lead подсветкой пультом

Самыми современными осветительными приборами являются светодиоды: светодиодные лампы, прожектора или модули. Хотя есть конструкции, в которых элементы соединены в полосу, – это светодиодные ленты. Они производятся различной яркости и цвета, есть и многоцветные ленты RGB (R – red «красный», G – green, «зелёный», B – blue, «синий»), позволяющие менять цвет ленты при помощи RGB-контроллера.


Применение многоцветной ленты

RGB лента, благодаря возможности менять цвет и яркость, используется во многих местах и дизайнерских решениях:

  • Основное или вспомогательное освещение комнаты. В сочетании с центральной люстрой делает освещённость более равномерной, а самостоятельно создает романтическое освещение или в сочетании с пультом с соответствующими возможностями обеспечивают цветомузыкальные эффекты;
  • В спальне, коридоре и на кухне обеспечивает дежурное и полное освещение. Переключать режимы можно вручную, по таймеру или датчиком движения;
  • Подсветка витрины магазина. Оттенок света выбирается по желанию оформителя;
  • Моддинг компьютера. Цвет может зависеть от температуры или загрузки процессора;
  • Фитолампа. Это удобный, но невыгодный вариант – используются только два цвета: красный и синий.

Конструкция led-ленты RGB

Светодиодная лента – это гибкая полоса, на которой расположены две, а на led-лентах RGB – четыре токопроводящие полоски. Между этими полосками расположены группами три последовательно включённых светодиода и токоограничивающее сопротивление. Элементы схемы используются формы SMD – surface mounted device (прибор, монтируемый на поверхность). Отличаются такие конструкции по размеру светодиодов, выраженному в 0,1 мм.

В многоцветных led-лентах устанавливаются элементы SMD5050 или 5*5мм. В отличие от светодиодов меньшего размера, в них три светодиода в одном корпусе. В монохромных конструкциях эти элементы включены параллельно, а в RGB-конструкциях каждый вывод подключается к своей токопроводящей полоске и имеет свой цвет свечения. Исключение составляют устройства, в которых в каждом элементе установлен ШИМ-контроллер. В таких аппаратах всего две токопроводящие полоски. Управление осуществляется при помощи цифрового сигнала.

Кроме обычных RGB-лент есть устройства RGBW. В них, кроме многоцветных, есть белые светодиоды. С их помощью достигается повышенная яркость и большее количество оттеков света.

Управление цветом

В многоцветных полосах управление яркостью каждого цвета осуществляется по отдельности. Этим достигается большое количество оттенков. При включении всех светодиодов на полную мощность лента начинает светиться белым цветом.

Для управления применяется RGB контроллер. Он может оснащаться пультом управления разного типа:

  • Встроенный или выносной на проводах. Применяется там, где не требуется постоянная регулировка цвета, например, в витринах магазинов;
  • С ИК-пультом. Самые простые и недорогие. Недостаток в том, что такой пульт работает только в пределах прямой видимости;
  • С радиопультом. Позволяет управлять светом даже из соседней комнаты, но при утере пульта приходится менять устройство;
  • С Wi-Fi и Bluetooth. Позволяет управлять при помощи мобильного телефона. Могут использоваться в системе «умный дом».

Кроме регулировки цвета всей ленты одновременно, есть устройства, в которых каждый светодиод оснащён ШИМ-контроллером, регулирующим цвет своего светодиода. В таких конструкциях возможны различные цветосветовые эффекты: переливы цвета, бегущие огни, звёздный дождь и другие.


RGB контроллер

Управление led-лентой при помощи Ардуино

Один из способов управления многоцветными светодиодными устройствами – это платы Ардуино. В таких платах установлен программируемый микроконтроллер, к которому подключаются различные датчики и выходные устройства. По заданной программе такие устройства управляют цветом и яркостью свечения светодиодов. Они оснащаются аналоговыми выходами для управления обычной ргб-лентой, и цифровыми – для ленты с ШИМ-контоллерами.

Питание ленты RGB

Самое распространённое напряжение питания =12В, но встречаются полосы на 24, 110 и 220В. Они отличаются количеством соединённых последовательно светодиодов в группе.

Перед тем, как подключить rgb-ленту, нужно определить необходимую мощность блока питания, учитывая 20% запас. Питание таких устройств осуществляется от блоков питания разной мощности:

  • До 25Вт (2А). Такие устройства похожи на блок питания планшета или мобильного телефона, включаются в розетку;
  • До 100Вт (9А). Это приборы в пластиковом корпусе. Их можно спрятать в шкафу или в нише, в гипсокартонной стене;
  • Свыше 100Вт. Это аппараты в металлическом корпусе со встроенными кулерами. При установке необходимо предусмотреть доступ воздуха. При работе шумят, поэтому в доме целесообразнее вместо одного мощного устройства использовать несколько маломощных.

Сечение проводов для подключения светодиодных лент

При подключении таких приборов блок питания необходимо располагать рядом с лентой. Это связано с падением напряжения в подсоединяемых проводах.

Например, для подключения 5 метров ленты RGB SMD5050, напряжением 12В, мощностью 14,4Вт/метр, общей мощностью 72Вт и током, по формуле I=P/U=72Вт/12В=6А достаточно сечения провода 0,5 мм². Но при длине провода 10 метров падение напряжения составит 4В, поэтому необходимо выбрать сечение не менее 4 мм².

Информация. Для подключения устройств, находящихся на расстоянии друг от друга, используются отдельные блоки питания и RGB-повторители.

Подключать ленты последовательно допускается не более 5 метров. При большей длине растёт падение напряжения на токоведущих полосках, снижение яркости к концу, а также их нагрев. Это приведёт к выходу устройства из строя.


Подключение ленты RGB

Подключение проводов

Для подключения на токопроводящих полосках есть контактные площадки – расширения, к которым производится подключение проводов. Они присоединяются двумя способами: пайкой или коннекторами.

Пайка проводов

Для подключения полосы при помощи пайки необходимы гибкие многожильные провода сечением не более 0,5 мм². Провода большего сечения могут оборвать контактные площадки.

Флюс используется только нейтральный. Порядок действий следующий:

  1. если лента покрыта слоем силикона, нужно снять его, не повреждая токопроводящий слой;
  2. паяльником мощностью не больше 15Вт залудить контактные площадки;
  3. отрезать куски проводов необходимого размера;
  4. снять изоляцию с провода на 5 мм и залудить его;
  5. отрезать кусок термоусадочной трубки длиной 25 мм и надеть её на ленту;
  6. припаять провода;
  7. надеть термоусадочную трубку на место пайки и прогреть строительным феном или зажигалкой.

Внимание! Кислоту использовать нельзя – она может разрушить токопроводящие полоски или вызвать короткое замыкание.

Соединение коннекторами

Кроме пайки, подключение производится при помощи специальных коннекторов. Это менее надёжный, но более простой и быстрый способ. Кроме того, при подключении или ремонте ленты, установленной в труднодоступном месте, это единственный способ.

Коннекторы производятся разной формы: прямые, угловые, Т-образные, с проводами, для подключения к сети и без, для соединения отрезков полосы между собой.


Коннектор RGB

Ремонт ленты

При выходе из строя отдельных участков полосы нет необходимости менять всю ленту целиком – достаточно заменить повреждённый участок. Это делается при помощи коротких, 10-15 мм, кусочков проводов или соединительными коннекторами.

Степень водозащищенности

Ленты производятся с разной степенью защиты от неблагоприятных воздействий окружающей среды:

  • IP20/IP33. Это открытые полосы. Применяются в сухих местах, в которых исключено попадание брызг воды. Это подсветка подвесного потолка, компьютерной клавиатуры или замена настольной лампы;
  • IP65. Покрыты силиконом только с лицевой стороны. Используются для подсветки плинтусов, рабочей зоны на кухне и других местах, в которых возможны брызги, но исключено попадание струй воды;
  • IP67/IP68. Покрыты силиконом полностью. Используются в любых условиях, в том числе в воде: в бассейнах и аквариумах.

Виды водозащищенности ленты

Многоцветная светодиодная лента RGB – это новый современный вид освещения, позволяющий украсить интерьер разнообразными световыми эффектами.

Видео

elquanta.ru

WS2811: микросхема для управления трехцветным RGB-светодиодом | hardware

Микросхема WS2811 компании Worldsemi является трехканальным драйвером для управления светодиодами стабилизированным током, при этом обеспечивается 256 градаций яркости по каждому каналу (обычно это R красный, G зеленый, B синий, RGB). В этой статье представлен перевод даташита "WS2811 Signal line 256 Gray level 3 channel Constant current LED drive IC".

Яркость светодиодов, подключенных к WS2811, управляется последовательным цифровым кодом, который формируется микроконтроллером. Данные при этом передаются всего лишь по 1 проводу. Цифровой сигнал управления проходит сквозь микросхему WS2811, так что несколько микросхем WS2811 могут быть объединены в длинную цепочку с сохранением возможности управлять каждым светодиодом в цепочке по отдельности.

[Особенности микросхемы WS2811]

Рабочее напряжение выходного порта до 12V. Имеется встроенный регулятор напряжения питания VDD, так что можно питать микросхему даже от 24V, если последовательно подключить гасящий напряжение резистор Может быть установлено до 256 уровней яркости, и при этом частота сканирования составляет не менее чем 400 Гц. Имеется встроенный узел восстановления формы входного сигнала данных, что обеспечивает отсутствие накапливания искажений на линии сигнала. Имеется встроенный узел сброса, который сбрасывает микросхему при включении и восстановлении питания. Сигнал от одной микросхемы к другой может быть передан через один сигнальный провод. Любые две точки между приемником и передатчиком сигнала могут находиться друг от друга на расстоянии более 10 м без необходимости дополнительных усилителей. При скорости обновления 30 fps (30 кадров/сек) модель каскадирования на низкой скорости позволяет соединить в цепочку не менее 512 точек, на высокой скорости можно соединить не менее 1024 точек. Данные передаются на скоростях до 400 и 800 Kbps (килобит/сек).

WS2811 могут применяться для создания декоративного освещения с помощью светодиодов (LED), а также для видеоэкранов либо информационных табло как внутри помещения, так и снаружи.

[Общее описание WS2811]

WS2811 имеет 3 выходных канала специально для управления LED. В микросхеме имеется встроенный продвинутый цифровой порт данных с возможностью усиления сигнала и восстановления его формы. Также в микросхему встроен точный внутренний генератор и программируемый источник постоянного выходного тока, рассчитанный на рабочее напряжение до 12V. Для снижения пульсаций напряжения питания 3 выходных канала разработаны с функцией задержки включения (delay turn-on function).

Микросхема использует режим обмена данными NZR (Non-return-to-zero, код без возврата к нулю ). После сброса при подаче питания (power-on reset), порт DIN принимает данные от внешнего контроллера, при этом первая микросхема собирает первые 24 бита данных, и затем передает их во внутреннюю защелку данных, при этом у остальных данных восстанавливается форма с помощью узла восстановления и усиления, и эти остальные данные передаются следующей в цепочке микросхеме через порт DOUT. После прохождения каждой микросхемы количество бит в общем потоке уменьшается каждый раз на 24 бита. Технология автоматического восстановления передаваемого сигнала данных устроена таким образом, что количество каскадируемых микросхем ограничивается только скоростью передачи и требуемой частотой обновления яркости светодиодов.

Данные, защелкнутые в микросхему (24 бита), определяют скважность сигнала выходных портов OUTR, OUTG, OUTB, управляющих светодиодами - применяется PWM (ШИМ, широтно-импульсная модуляция), так что от скважности импульсов выходных портов зависит яркость каждого канала. Все микросхемы в цепочке синхронно отправляют принятые данные на каждый сегмент, когда поступит сигнал сброса на входной порт DIN. Далее будут снова приниматься новые данные после завершения сигнала сброса. До поступления нового сигнала сброса управляющие сигналы портов OUTR, OUTG, OUTB остаются неизменными. Микросхема передает имеющиеся данные PWM на порты OUTR, OUTG, OUTB после приема сигнала сброса низкого уровня, еще в течение 50 мкс.

Часто микросхема WS2811 встраивается прямо в корпус RGB-светодиода (это решение применяют в популярных светодиодных лентах), такой светодиод называется 5050 RGB LED.

Отдельно микросхема WS2811 поставляется в корпусах SOP8 и DIP8.

В таблице ниже показано назначение ножек WS2811.

Мнемоника Описание функции вывода
1 OUTR Выходной сигнал PWM для управления яркостью красного светодиода (Red).
2 OUTG Выходной сигнал PWM для управления яркостью зеленого светодиода (Green).
3 OUTB Выходной сигнал PWM для управления яркостью синего светодиода (Blue).
4 GND Земля, общий провод, минус питания.
5 DOUT Выход сигнала данных (для каскадирования микросхем).
6 DIN Вход сигнала данных.
7 SET Установка низкоскоростного режима работы микросхемы (при подключении SET к VDD) или высокоскоростного режима (когда ножка SET никуда не подключена).
8 VDD Плюс напряжения питания.
Параметр Мнемоника Значение Ед. изм.
Напряжение питания VDD +6.0 .. +7.0 V
Выходное напряжение VOUT 12 V
Входное напряжение VI -0.5 .. VDD+0.5 V
Рабочая температура Topt -25 .. +85 oC
Температура хранения Tstg -55 .. +150 oC

Примечание: если напряжения на выводах превысят максимальное значение, то это может необратимо повредить микросхему.

[Электрические характеристики]

[Динамические характеристики]

TA = -20 .. +70oC, VDD = 4.5 .. 5.5V, VSS = 0V, если не указано что-то другое.

Параметр Мнемоника Условие MIN NOM MAX Ед. изм.
Рабочая частота Fosc1 - - 400 - КГц
Fosc2 - - 800 - КГц
Задержка передачи (время распространения сигнала) tPLZ CL=15 пФ, DIN->DOUT, RL=10 кОм - - 300 нс
Время спада tTHZ CL=300 пФ, OUTR/OUTG/OUTB - - 120 мкс
Скорость передачи данных FMAX Скважность 50% 400 - - кбит/с
Входная емкость CI - - - 15 пФ

[Интервалы времени для режима низкой скорости (Low Speed mode)]

В этой таблице показаны интервалы времени, которыми кодируются биты данных 0 и 1, и сигнал сброса.

Примечание: для режима высокой скорости все интервалы времени уменьшаются в 2 раза, но время сброса (reset time) остается неизменным.

Диаграммы поясняют принципы кодирования и передачи данных.

Микроконтроллер посылает данные для микросхем D1, D2, D3 и D4. Микросхемы соединены в цепочку, и данные, которые проходят через них (DIN -> DOUT), восстанавливаются и усиливаются. При этом от последовательности данных каждый раз отрезается по 24 бита данных, которые предназначены именно этой микросхеме после прохождения массива данных для всех микросхем следует сигнал сброса RES (импульс лог. 0 с длительностью не менее 50 мкс). После этого принятый уровень яркости (24 бита на микросхему) передается на выходы PWM OUTR, OUTG, OUTB. Вот так составлена последовательность 24 бит, которая кодирует уровни яркости каналов OUTR, OUTG, OUTB микросхемы (старший MSB бит идет первым):

R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0

[Стандартные схемы включения]

В этом примере каждый канал в светодиоде RGB управляется постоянным током 18.5 мА, яркость светодиода при этом определяется скважностью PWM (ШИМ). Благодаря стабилизации тока при снижении напряжения питания светодиоды сохраняют свою яркость и цветовую температуру. Для того, чтобы пульсации напряжения питания не влияли на работу микросхемы, рекомендуется использовать фильтрующую цепочку, состоящую из последовательного резистора номиналом на более 100 Ом и блокирующего конденсатора емкостью порядка 0.1 мкФ. Для предотвращения отражений сигнала и для обеспечения возможности горячего соединения в цепь сигнала должен быть включен последовательный резистор номиналом в 33 Ом.

Как и в предыдущем примере, светодиоды управляются стабилизированным током 18.5 мА. R1 используется для нормальной работы внутреннего стабилизатора напряжения микросхемы, его номинал должен быть 2.7 кОм. Обычно на красном светодиоде всегда падает меньше напряжение при том же самом токе, чем на светодиодах других цветов, и красный светодиод светится ярче. Поэтому канал OUTR должен иметь дополнительный резистор RR, сопротивление которого можно рассчитать по формуле:

12 - (3 * VLEDR)RR = ------------- кОм 18.5

В этой формуле VLEDR равно падению напряжения на одном светодиоде красной группы (обычно равно 1.8V .. 2V).

[Как устроена светодиодная RGB-лента]

На фото показана обычная влагозащищенная светодиодная RGB лента, построенная на основе технологии микросхем WS2811 (WS2811 waterproof LED Strip) длиной 5 метров, модель GE60RGB2811C. Обычно такая лента поставляется намотанной на бобину, вместе с крепежом для монтажа на стену. Для питания ленты нужен источник стабилизированного напряжения 5V 18A (потребление мощности 18 Вт на 1 метр). На концах ленты установлены коннекторы вход папа (сюда заходит цифровой сигнал и должно быть подключено питание) и выход мама (отсюда выходит цифровой сигнал и здесь также может быть подключено питание), благодаря чему ленты можно соединять друг с другом для увеличения общей длины.


Лента собрана на ленте из тонкого текстолита (гибкая двухсторонняя печатная плата) и устроена так, что ленту можно обрезать в любом месте для получения нужного размера.

Для управления RGB светодиодной лентой используют специальные контроллеры, которые программируются от компьютера через USB или с помощью карты SD. Контроллер может задавать сложный автоматический алгоритм управления лентой, некоторые могут даже работать как цветомузыка - с помощью встроенного микрофона анализируют звук и в такт мелодии управляют цветом ленты.

Всем доброго времени суток. Для начала скажу, что идея связать RGB LED Controller для ленты с умным пультом далеко не новая и родилась у меня достаточно давно. Но в этой публикации хотелось бы акцентировать внимание на простоте задумки и дешевизне её реализации. Как обычно предлагаю посмотреть вам видеоролик с моего канала о воплощение этой небольшой идеи в жизнь, а уже потом перейти к текстовой части обзор, там много того, о чём я не сказал в ролике. Несмотря на то, что ролик получился относительно коротким, для вашего удобства я написал по нему навигацию.

0:00 - 3:43 - Распаковка контроллеров и теория
3:44 - 6:15 - Подключение и переделка коннекторов
6:16 - 6:45 - Проверка работы
6:46 - 8:57 - Биндинг LED ленты на Xiaomi Remote 360
8:58 - 9:32 - Заключение и демонстрация

Контроллер для RGB LED ленты -

Контроллеры я купил на AliExpress по за каждый, умный пульт Xiaomi Remote 360 я приобрёл там же уже очень давно - его стоимость составляет примерно .

Учитывая, что таких контроллеров можно купить под любую LED ленту и запрограммировать на работу с Xiaomi Remote 360, при этом ИК каналы по цветам будут конфликтовать не очень часто, вполне спокойно можно отдать приоритет такому решению по сравнению с умной LED лентой Xiaomi Yeelight. Она конечно имеет собственный плагин и варьирование цветовых решений представлено в большем объёме, но её стоимость и длинна, выдвигают в приоритет всё же моё простое решение.


Умная LED лента Xiaomi Yeelight - или

При выборе контроллера для LED ленты сразу же решил отмести все контроллеры, которые имеют собственное софтовая обеспечение и работают по Bluetooth или Wi-Fi поскольку нам в данном случае интересная работа в рамках экосистемы умного дома Xiaomi.

Был у меня Wi-Fi контроллер, который раньше стоял на этой LED ленте. Он то ли конфликтовал с моим роутером, то ли из коробки был кривой и очень долго отвечал на сигналы сенсорного пульта, а в большинстве случаев вообще никак не реагировал, ловил непонятные Wi -Fi и включался самостоятельно. В интернете так ничего и не нашёл по его программированию и решению этой проблемы после чего расстался с ним, как раз-таки после этого пришла в голову идея реализовать подобного рода интеграцию.


Теперь перейдем непосредственно к самому контроллеру. Он представляет из себя небольшую плату с чипами, посредством которых осуществляется смешение цветов по типу RGB Сurves. Плата имеет выведенный приемник ИК сигнала, припаянный разъем для подключения питания, разводку на три цветовых канала и плюс. Всё это собрано в небольшой белый дешманский пластиковый корпус. Вникать в особенности платы я не собираюсь, просто потому что не обладаю особыми знаниями в микросхемах и умничать не буду, в конце концов нам интересна исключительно работа данного контроллера в рамках системы умного дома Xiaomi, а не его внутренности.




При подключение контроллера к ленте возникли небольшие проблемы в том, что я, к сожалению, не посмотрел на коннекторы подключения при покупке и они оказались одинаковыми, поэтому пришлось быстро поменять коннектор на контроллере на «папу», донором само собой явился старый контроллер. Можно было конечно скрутить провода на прямую, но мне было необходимо, чтобы контроллер в случае чего мог мобильно переместиться и управлять другой лентой. Для зачистки тонких контактов лучше использовать специальный стриппер, ну и ли поступить так, как я предложил и сделал на видео.


Стриппер для зачистки проводки -

Так же в обиходе при работе с тонкой проводкой LED лент лучше иметь термоусадочные трубки, коих у меня тоже не оказалось.


Термоусадочные трубки для изоляции проводки -

Пульты у подобного рода контроллеров практически все одинаковые отличием является наличие ключей или кнопок, которые позволяют делать выбор того или иного цвета, а также включать программы цветового варьирования. В моем случае это пульт на 44 ключа, большинство из которых запрограммированы. При этом поскольку контроллеры достаточно дешевые возможно повторение ИК сигналов на разных клавишах разных контролёров. То есть, например, ИК сигнал с пульта одного контроллера, отвечающего за включение красного цвета, может включать режим переливания цветов на другом контроллере и наоборот. Также они могут конфликтовать с пультом от телевизора.


Второй контроллер я подключил к LED ленте, которая подсвечивает рамки телевизора. Поскольку донорного коннектора на «папу» у меня не оказалось пришлось скручивать провода на прямую.


LED лента на телевизоре перекочевала со стола, так как многие светодиоды вышли из строя и не адекватно реагировали на команды контроллера. Ретушь рамок телевизора решила эту проблему и смотрится подсветка в таком расположении вполне годно. В дальнейшем планирую заменить её на остатки LED ленты расположенной нынче на столе.


Теперь связываем контроллер LED ленты с Xiaomi Remote 360 в дальнейшем эта связка позволит не просто удалённо управлять LED лентой со смартфона, но и задавать сценарии с использованием .

Для связки контроллера и умного пульта Xiaomi Remote 360 переходим в приложение mi home – add devises – плагин управления пультом.


Затем снизу выбираем самую первую иконку с двумя пультами наложенными друг на друга – это режим простого биндинга пульта, при котором каждую кнопку на пульте нужно программировать по отдельности.


Нажимаем на изображение самого первого пульта ➜ нажимаем плюс ➜ вводим название кнопки нажимаем далее.


после появится картинка, указывающая на необходимость нажать программируемую кнопку на пульте, повторяем операция и программируем все необходимые цвета ➜ после нажимаем на кнопку в верхнем правом углу, подтверждая создание нового пульта и кнопок, которые мы запрограммировали.

Из минусов можно отметить отсутствие анимации нажатия кнопки - своего рода анимированного тумблера, при наличии, которого можно было бы понимать какой прибор работает, а какой нет, включая его удалённо и не имея возможности визуально его наблюдать.

В общем вот такие нюансы с подсвечиванием различных объектов LED лентой в моей комнате. От себя могу сказать, что экспериментировать с подобного рода решениями мне нравиться. Контроллеры и LED ленты я однозначно рекомендую к приобретению для аналогичных и подобный этому решений. Ну, а теперь предлагаю посмотреть ряд фоток и оценить получившуюся эстетику.





Спасибо за просмотр, не забывайте подписываться на и комментировать ролики, там будет много нового и интересного контента.

Тестируемая мной конструкция позволяет управлять освещением в любой комнате с помощью смартфона.
Ранее, я тестировал многоцветную RGBW лампу (обзор) , но захотелось более яркого и менее точечного света. Стал смотреть в сторону светодиодных лент и их контроллеров. Решил не связываться с дешёвыми китайскими поделками для RGB лент, а опять же использовать Mi-Light.

Система управления светом Mi-light работает на частоте 2,4 ГГц и предполагает управление с пульта ДУ или по Wi-Fi со смартфона либо планшета. Для работы системы необходимы светодиодная лента или лампочка, Wi-Fi контроллер или пульт ДУ, драйвер управления лентой и блок питания для светодиодной ленты.
В данном обзоре я соберу систему управления лентой из цветных и белых светодиодов с помощью смартфона.

Т.к. Wi-Fi модуль Mi-Light у меня уже был в наличии, осталось приобрести драйвер для светодиодной ленты и саму ленту. В конце обзора приведу ссылки на Aliexpress.

Драйвер прилетел в Беларусь за 25 дней, трек отслеживался. Упакован в фирменную коробочку, пупырчатую плёнку и полиэтилен. Драйвер я выбрал 4 канальный, с управлением RGBW - т.е. управление 3 основными цветами и отдельно - белым светом.

Лента прилетела за 27 дней, трек отслеживался. Упакована в антистатический пакет, пупырчатую плёнку и полиэтилен. Сама лента намотана на пластиковую бобину.


Ленты RGBW бывают со светодиодами белого и RGBWW (warm white) - тёплого белого свечения, я выбрал тёплый цвет.
В купленной мной ленте используются светодиоды 5050, 60 светодиодов на метр, т.е. 30 RGB и 30 белых. Лента сделана сегментами по 10 см (6 светодиодов), т.е. можно резать на небольшие кусочки кратные 10 см.


По заявлениям продавца - лента имеет мощность 45 ватт. Я провёл свои замеры. Использовался стабилизированный БП напряжением 12,0 вольт:
Белый свет - 1,3А (15,6 Ватта), синий - 0,7А (8,4 Ватта), зелёный - 0,7А (8,4 Ватта), красный - 0,73А (8,76 Ватт).
Получается, что суммарная мощность ленты - 41,16 ватта, что в принципе соответствует заявленным характеристика (делаем скидку на то, что редкий бытовой блок питания, который обычно используют для питания ленты выдаёт ровно 12 вольт при различной нагрузке). Лента не требует вклеивания в алюминиевый профиль, т.к. практически не греется, даже при максимальной потребляемой мощности. Оснащена хорошим двухсторонним скотчем производства 3М, без проблем приклеилась на обои и на крашеный потолок.

Небольшое отступление по поводу питания такой ленты:

если вы планируете использовать только 1 такую ленту, то вам будет вполне достаточно блока питания мощностью 36 ватт, объясню почему: контроллер не позволяет включить одновременно белые и цветные светодиоды, поэтому максимальная мощность ленты будет при определённой комбинации цветов - 25,6 Ватта и, не забываем про 20-30% запас по мощности. (ссылка на недорогой БП - в конце обзора).

Драйвер ленты - качественно сделанная белая коробочка, размерами 85х45х23 мм, весом 46 грамм, с наклейкой, обозначающей подключение источника питания и потребителей. Основные характеристики следующие:
Входное напряжение 12-24 вольт, максимальный ток 6А на канал, т.е. теоретически он без проблем может управлять 4 лентами.
У меня возникли подозрения, не будет ли мерцания светодиодов в связи с использованием для регулировки яркости ШИМ контроллера и отсутствием выходных фильтров. Да, при яркости отличной от максимальной - мерцание на камеру заметно. Поскольку внутри корпуса много места - в будущем доработаю данный драйвер, установив сглаживающие конденсаторы.

Входное подключение сделано как для разъёма 5мм, так и обычными винтовыми клеммами. 5 выходных контактов - сделаны винтовыми клеммами.
Wi-fi контроллер, управляющий устройствами Mi-Light - ещё одна качественная белая коробочка, размерами 90х65х15 мм, весом 37 грамм, имеет 2 светодиодных индикатора, показывающих состояние работы и один вход - micro-USB для питания. Питание может осуществляться от любого источника, напряжением 5 вольт и током не менее 500мА. В комплекте имеется micro-USB кабель и кусочек двухстороннего скотча, для фиксации, например, на стену.

Не совсем понятно, для чего такой размер корпуса, ведь внутри "всего-ничего"

Фото платы. Я планирую встроить её в блок питания, подав с него питание через стабилизатор.

Дальше займёмся подключением. Для начала - подключим Wi-Fi контролер к домашней сети. Подключаем кабель питания контроллера к USB порту - ноутбук, зарядка и т.д. Если индикатор SYS мигает примерно раз в секунду - значит всё отлично. Затем необходимо установить приложение на смартфон либо планшет. Приложения есть как для IOS так и для Android, легко находятся поиском в Appstore или Googleplay по слову milight.
При первом включении, контроллер работает в режиме точки доступа, появится новая сеть с именем milight_28520A, подключаемся к ней.

Запускаем приложение, в Device List появляется наш контроллер, виден его маc-адрес (к сожалению на самом устройстве он нигде не написан).

Выбираем контроллер и попадаем в меню выбора мониторов управления (Select Monitor). Внизу есть иконки Monitor, Information и Configuration.

Для подключения к домашней сети - кликаем на инконку Configuration, нажимаем Wi-Fi setting и попадаем в меню выбора беспроводной сети.

Выбираем нужную сеть, вводим пароль, жмём ОК и видим окно с поздравлением и предложением перезагрузить контроллер в режиме STA, т.е. клиента. Жмём на ОК и подключаем смартфон обратно к своей сети.

К сожалению, в данном контролере не реализована проверка введённого пароля. Если всё ввели правильно, после перезагрузки на контролере загорится светодиод LINK - значит он подключился к вашей сети. Если вы ошиблись при вводе пароля или на каком-нибудь другом этапе подключения, и LINK не горит, не беда, берём тонкий предмет, например стержень от ручки и на 3 секунды зажимаем кнопку RST (спрятана в торце корпуса, рядом с micro-USB разъёмом). Индикатор SYS быстро замигает и вай-фай перезагрузится. Дальше проделываем всё сначала, с момента подключения к сети контроллера.
Теперь можно снова зайти в программу, нажать иконку обновить, в списке как и в прошлый раз появится наш контроллер, выбираем его и попадаем в меню выбора мониторов. Войдя в меню Information - можем поменять имя и сделать фото либо установить готовое на "Автару" контроллера.

На этом пока всё, настройка Wi-FI - закончена.

Теперь подключим ленту к драйверу. Пришедшая мне лента с обеих сторон оборудована разъёмами для последовательного соединения. С одной стороны нам данный разъём не нужен, поэтому либо отпаиваем его, либо отрезаем и аккуратно зачищаем провода.
На этапе подключения я обнаружил странную особенность выводов ленты: перепутаны цвета проводов. Чёрный провод - плюс питания ленты, белый провод управление W - т.е. белыми светодиодами. А вот с другими цветами - непорядок, зелёный провод соответствует синему цвету, красный - красному, синий - зелёному.

Что упрощает задачу, так это то, что на ленте и драйвере последовательность цветов - совпадает, т.е. +RGBW - провода подключаются подряд. Используя тонкую отвертку прикручиваем проводки, получаем вот такую картину



Затем необходимо подключить питание. Поскольку у меня есть 12В блок питания, необходимой мощности, да ещё и оборудованный нужным разъёмом, я просто втыкаю штекер, в ином случае - необходимо с помощью отвёртки прикрутить 2 провода питания, обязательно соблюдая помеченную на наклейке и корпусе полярность.

У меня при первом включении лента загорелась красным светом. Сейчас нам необходимо "привязать" драйвер ленты к Wi-Fi контроллеру. Делается это по разному, в зависимости от используемого типа монитора в программе. Заходим в программу, выбираем наш контроллер, выбираем тип монитора: для нашего 4-х канального RGBW - доступен только один тип - номер 4.

Это самый "навороченный" монитор, позволяющий подключить множество устройств и разбить их на 4 зоны управления, например 2 для комнаты, 1 для коридора и 1 для кухни. Привяжем нашу ленту на первую зону. Для этого отключаем питание от драйвера ленты, затем включаем питание и в течении 3 секунд нажимаем 1 раз на кнопку включения первой зоны.
Если всё получилось - лента несколько раз моргнёт белым цветом. Всё, дальше можете управлять ей как угодно. Поворачивая ползунок - менять цвет, двигая второй ползунок - менять яркость, если необходимо включить белый свет - нажмите на кнопку включения 1-й зоны.
Имейте ввиду, что для использования драйвера ленты с пультом или с другим вай-фай модулем, сначала её необходимо "отвязать" от текущего. Делается это так: выключаем питание драйвера, включаем, и, в течении 3 секунд длительно (1 сек достаточно) нажимаем на кнопку включения зоны, к которой была привязка. Если драйвер "отвязался" лента моргнёт несколько раз белым светом.
Что бы не запутаться, какая лампа или лента к какой зоне привязана - нажав кнопку EDIT - можно ввести название для каждой из 4-х зон.

Данный контроллер имеет 9 предустановленных программ, уже знакомых по лампочке из прошлого обзора:
1. плавное изменение цветов
2. плавное зажигание-тушение белого цвета
3. плавное зажигание-тушение красного/синего/зелёного/белого цветов
4. резкая смена белого, красного, зелёного, синего, жёлтого, розового, голубого цветов
5. случайное включение цветов с различной яркостью
6. плавно зажигание-гашение и 3 моргания красного цвета
7. плавно зажигание-гашение и 3 моргания зелёного цвета
8. плавно зажигание-гашение и 3 моргания синего цвета
9. последовательные включение режимов 1-8
Вы можете изменять яркость и скорость работы программы.

Для теста повесил на карнизе. Жене очень понравилось, можно создавать различную обстановку в комнате, а яркости белых светодиодов хватает для чтения. Особенно приятно - управлять всем этим со смартфона. В итоге, заказал ещё 2 ленты. Периметр комнаты 14 метров, планирую проклеить по кругу, вдоль потолка и сделать натяжной потолок чуть ниже. Лента будет светить за натяжным потолком параллельно ему, что сделает свет ещё более мягким и рассеянным.
Ещё не проверял, но пишут, что есть стороннее ПО, там функционал может быть гораздо большим, например включение-отключение по таймеру, создание собственных программ и т.д.

К сожалению, фотографии с трудом передают цвета и внешний вид подсветки. Несколько лучших, просто для понимая что получилось

Светодиодная лента - это устройство производящее световой поток и работающее на основе полупроводникового прибора - светодиода. Они появились не так давно, но даже за такой короткий промежуток времени нашли широкое применение в организации подсветок, а иногда и в качестве основного освещения. За счёт хорошей герметичности применять их можно в зависимости от типов как для наружной, так и для внутренней подсветки. Не все марки светодиодной ленты могут применяться для освещения на улице и во влажных помещениях, а только те, которые герметично залиты силиконом.

Светодиодные ленты выпускаются производителями по пять метров в длину и могут содержать, чаще всего, от 60 до 120 диодов на один метр, излучающих свет. Ширина ленты составляет всего 8 мм, а высота не больше 3 мм. Это даёт возможность дизайнерам выбрать светодиодную ленту и устанавливать её даже в самых труднодоступных местах, в мебели, в торцах гипсокартонных потолков, а автомобилистам в любом доступном месте где есть возможность вывести два провода для питания. Ленты делятся на два типа светодиодов:

  1. Однокристальные;
  2. Многокристальные.

Многокристальные светодиоды зачастую идут в так называемых RGB-лентах, которые светить могут не одним цветом, а несколькими. R - красный (red), G - зеленый (green), B - синий (blue). Также есть возможность соединять эти цвета, получая дополнительные цветовые гаммы и оттенки. Если выполнять это вручную то лучше воспользоваться тумблерами или выключателями, но это не совсем удобно. Для регулировки существуют специальные электронные микроконтроллеры. Такой контроллер управления зачастую оснащён дистанционным пультом управления, с помощью которого можно менять не только мощность освещения, но и переход от холодного спектра до тёплого. С пультом управления, работающим на расстоянии, можно с лёгкость производить все манипуляции.

Правильное питание светодиодов, возможно только от постоянного напряжения небольшой величины, а ленты на их основе рассчитаны на напряжение 12 вольт. Ток в цепи светодиодной ленты будет зависеть от:

  1. Длины;
  2. Мощности одного светодиода или же метра ленты.

Поэтому выбирать блок питания для всей световой установки нужно зная эти основные параметры.

Управление светодиодной лентой и светодиодными светильниками

Для того чтобы управлять светодиодной лентой, а конкретнее её яркостью существуют специальные электронные устройства диммеры или светорегуляторы. Диммер подключается после блока питания или в отдельных случаях может быть установлен в нём.

Управление светодиодным освещением на основе ленты можно выполнять с помощью таких устройств регулирования яркости:

  • Поворотного механического регулятора;
  • Кнопочного управления светодиодами;
  • Сенсорного управления светодиодами, зачастую они имеют удобный жидкокристаллический дисплей;
  • С пультом управления (от инфракрасного сигнала и радиосигнала);
  • Через электронные устройства по каналу Wi-Fi.

Все такие устройства регулирования яркости работают по принципу регулировки силы тока или с помощью довольно сложной широтно-импульсной модуляции (ШИМ). Устройства на основе ШИМ довольно компактные и стабильные. Стоит заметить что для создания многоцветной системы эффектов применяются двух- и трёхканальные диммеры зачастую с пультом управления.

Светодиодные светильники и компактные лампы на основе диода можно разделить на регулируемые яркость излучаемого светового потока (диммируемые) и нерегулируемые (недиммируемые). Управляемые светодиодные светильники могут регулироваться с помощью обычных регуляторов яркости, предназначенных для ламп накаливания. Для того чтобы правильно подобрать, на упаковке должна быть специальная маркировка.

Хороший пример для такого регулируемого источника качественного светового потока является светодиодный светильник saturn. Он изготавливается и предлагается в паре с пультом управления (ПДУ) и множеством удобных функций регулировки яркости и теплоты излучаемого света. Подключается управляемый светодиодный светильник Сатурн к сети 220 вольт и в нём уже установлен и драйвер, и управляющий электронный диммер. Такой светильник очень часто используется как люстра или управляемый светодиодный светильник. Кстати, даже для LED телевизоров и больших панелей, устанавливаемых для рекламы, тоже применяется система управления светодиодным экраном, основанная на такой же только более сложной электронной регулировке.

Как правильно паять светодиодную ленту

Для того чтобы правильно спаять части светодиодной ленты, нужно запомнить, что разрезать её можно только в специальных указанных на ней местах. При пайке ленты стоит пользоваться маломощным паяльником не более 40 Вт. Контакты присоединяемых участков должны быть тщательно зачищены от силикона или же лака, и залужены паяльником.

Естественно, что все эти работы выполняются при полном отключении светодиодной ленты от блока питания, или же блока питания от сети 220 вольт. Нельзя соединить многокристальную RGB-ленту и ленту где установлены однокристальные светодиоды. Светодиодные ленты должны быть одинаковы по структуре светодиода, а желательно и правильно выбрать их по потребляемой мощности метра её длины. Спайка производится с помощью залуженных многожильных медных проводов. Сечение стоит подбирать по току или мощности всей ленты. После пайки рекомендуется залить места соединения клеем или силиконом, для герметизации и защиты от короткого замыкания.

Как проверить исправность светодиода в фонарике

Для того чтобы проверить почему не светится фонарик, стоит сразу начать с источника напряжения (аккумулятора или батареек). Если же сменные источники электрического тока исправны, а светодиодный фонарик всё-таки не работает нужно проверит сам источник экономичного светового потока - светодиод. Для этого понадобится мультиметр или же любой омметр.

Светодиод - это электронный полупроводниковый прибор, который, как и обычный диод, проводит ток только в одном направлении. Поэтому, прикоснувшись щупами мультиметра к контактам светодиода в одну сторону, он покажет низкое сопротивление и может даже незначительно излучать свет, а в обратном направлении покажет большое сопротивление в несколько сотен кОм. Если результаты проверки показывают, что в обе стороны диод показывает малое сопротивление, то он пробит, если в обе стороны бесконечность, то это свидетельствует об обрыве внутри светодиода или о разрушении его полупроводникового перехода. Значит, светодиод неисправен и требует замены. утилизация светодиода не нужна в отличие от газоразрядных источников света.

Перед покупкой светодиодной ленты или же диммера к ней, а также регулируемой светодиодной лампы, стоит проконсультироваться у продавца или же менеджера по продаже, о совместимости диммера и источника света.

Видео управление светодиодной лентой с телефона