Назначение и основные характеристики ваттметра. Схема включения ваттметра. На корпусе указаны характеристики прибора


По предметам школьной программы набирают все большую популярность среди учащихся. В последнее время именно доступность интернета и мобильных гаджетов привела к резкому скачку числа участников таких мероприятий.
Но, если раньше участниками олимпиад по школьным предметам были в основном только отличники и успевающие ученики, то сейчас участником всероссийской олимпиады может стать совершенно любой школьник.

Портал всероссийских дистанционных олимпиад «Отличник» на своей странице в сети выложил отчет о результатах своих дистанционных олимпиад за последние годы. Из этого отчета видно, какие школьные предметы можно считать сводными для освоения и в каких заданиях участники чаще всего делают ошибки.

Самыми сложными, по мнению организаторов олимпиад и конкурсов «Отличник», являются предметы физика и химия. Олимпиада по химии включает в себя множество разных заданий из разделов неорганической и органической химии, и все они имеют примерно одинаковый процент ошибок участников. И совсем другая картина видна с заданиями по физике. О них и пойдет речь в данной статье.

27.06.2019

Среди общепромышленных, употребляемых для учета продукции и сырья, распространены товарные, автомобильные, вагонные, вагонеточные и др. Технологические служат для взвешивания продукции в ходе производства при технологически непрерывных и периодических процессах. Лабораторные применяют для определения влажности материалов и полуфабрикатов, проведения физикохимического анализа сырья и других целей. Различают технические, образцовые, аналитические и микроаналитнческие .

Можно разделить на ряд типов в зависимости от физических явлений, на которых основан принцип их действия. Наиболее распространены приборы магнитоэлектрической, электромагнитной, электродинамической, ферродинамической и индукционной систем.

Схема прибора магнитоэлектрической системы показана на рис. 1.

Неподвижная часть состоит из магнита 6 и магнитопровода 4 с полюсными наконечниками 11 и 15, между которыми установлен строго центрированный стальной цилиндр 13. В зазоре между цилиндром и полюсными наконечниками, где сосредоточено равномерное радиально направленное , размещается рамка 12 из тонкой изолированной медной проволоки.

Рамка укреплена на двух осях с кернами 10 и 14, упирающихся в подпятники 1 и 8. Противодействующие пружины 9 и 17 служат токоподводами, соединяющими обмотку рамки с электрической схемой и входными зажимами прибора. На оси 4 укреплена стрелка 3 с балансными грузиками 16 и противодействующая пружина 17, соединенная с рычажком корректора 2.

01.04.2019

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Соединение кабелей технологический процесс получения электрического соединения двух отрезков кабеля с восстановлением в месте соединения всех защитных и изоляционных оболочек кабеля и экранных оплеток.

Перед соединением кабелей измеряют сопротивление изоляции . У неэкранированных кабелей для удобства измерений один вывод мегаомметра поочередно подключают к каждой жиле, а второй — к соединённым между собой остальным жилам. Сопротивление изоляции каждой экранированной жилы измеряют при подключении выводов

МЕТОДИЧЕСКОЕ ПОСОБИЕ К ПРАКТИЧЕСКОЙ РАБОТЕ: «ЭКСПЛУАТАЦИЯ СИСТЕМ ОХЛАЖДЕНИЯ СЭУ»

ПО ДИСЦИПЛИНЕ: «ЭКСПЛУАТАЦИЯ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК И БЕЗОПАСНОЕ НЕСЕНИЕ ВАХТЫ В МАШИННОМ ОТДЕЛЕНИИ »

ЭКСПЛУАТАЦИЯ СИСТЕМЫ ОХЛАЖДЕНИЯ

Назначение системы охлаждения:

  • отвод теплоты от ГД;
  • отвод теплоты от вспомогательного оборудования;
  • подвод теплоты к ОУ и другому оборудованию (ГД перед пуском, ВДГ поддержание в "горячем" резерве и т.д.);
  • прием и фильтрация забортной воды;
  • продувание кингстонных ящиков летом от забивания медузами, водорослями, грязью, зимой - ото льда;
  • обеспечение работы ледовых ящиков и др.
Структурно система охлаждения подразделяется на пресной воды и систему охлаждения заборной воды. Системы охлаждения АДГ выполняются автономно.

Рис. 1. Система охлаждения дизелей


1 - охладитель топлива; 2 - маслоохладитель турбонагнетателей; 3 - расширительная цистерна ГД; 4 - водоохладитель ГД; 5 - маслоохладитель ГД; 6 - кингстонный ящик; 7 - фильтры забортной воды; 8 - кингстонный ящик; 9 - приемные фильтры ВДГ; 10 - насосы забортной воды ВДГ; 11 - насос пресной воды ГД; 12 - основной и резервный насосы забортной воды ГД; 13 - маслоохладитель ВДГ; 14 - водоохладитель ВДГ; 15 - ВДГ; 16 - расширительная цистерна ВДГ; 17 - опорный подшипник валопровода; 18 - главный упорный подшипник; 19 - главный двигатель; 20 - охладитель наддувочного воздуха; 21 - вода на охлаждение компрессоров; 22 - заполнение и пополнение системы пресной воды; 23 - подключение системы прогрева ДВС; 1оп - пресная вода; 1оз - забортная вода.

Электронные ваттметры на базе электронных вольтметров бывают параметрического и модуляционного типов. Параметрические ваттметры подразделяются на ваттметры прямого и косвенного преобразования.

Принцип работы параметрических ваттметр ов с прямым преобразованием основан на реализации функциональной зависимости вида:

Таким образом, в результате выполнения указанных математических операций с двумя сигналами можно получить их произведение, что и требуется при измерении мощности сигнала. Для этой цели ток предварительно преобразуется в напряжение, а возведение значений сигналов в квадрат осуществляется с помощью функциональных преобразователей.

Рис. 9.5 Структурная схема квадратурного ваттметра.

Модуляционные ваттметры основаны на двойной модуляции импульсных сигналов (широтно-импульсной – ШИМ и амплитудно-импульсной - АИМ)).

В счетчиках электроэнергии с разделением времени используется своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал Y) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой.

Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001%). Как приборы высокой точности они применяются в качестве эталонных счетчиков для поверки рабочих средств измерения.

Дискретизирующие ваттметры и счетчики электроэнергии основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение, представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:

.

Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.

Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.

Для непосредственного измерения мощности цепи постоянного тока применяется ваттметр. Неподвижная последовательная катушка или катушка тока ваттметра соединяется последовательно с приемниками электрической энергии. Подвижная параллельная катушка или катушка напряжения, соединенная последовательно с добавочным сопротивлением, образует параллельную цепь ваттметра, которая присоединяется параллельно приемникам энергии.

Угол поворота подвижной части ваттметра:

α = k2IIu = k2U/Ru

где I - ток последовательной катушки; I и - ток параллельной катушки ваттметра.

Рис. 1. Схема устройства и соединений ваттметра

Так как в результате применения добавочного сопротивления параллельная цепь ваттметра имеет практически постоянное сопротивление ru , то α = (k2/Ru)IU = k2IU = k3P

Таким образом, по углу поворота подвижной части ваттметра можно судить о мощности цепи.

Шкала ваттметраравномерна. При работе с ваттметром необходимо иметь в виду, что изменение направления тока в одной из катушек вызывает изменение направления вращающего момента и направления поворота подвижной катушки, а так как обычно шкала ваттметра делаетсяодносторонней, т. е. деления шкалы расположены от нуля вправо, то при неправильном направлении тока в одной из катушек определение измеряемой величины по ваттметру будет невозможно.

По указанным причинам следует всегда различать зажимы ваттметра. Зажим последовательной обмотки, соединяемый с источником питания, называется генераторным и отмечается на приборах и схемах звездочкой. Зажим параллельной цепи, присоединяемый к проводу, соединенному с последовательной катушкой, также называется генераторным и отмечается звездочкой.

Таким образом, при правильной схеме включения ваттметра токи в катушках ваттметра направлены от генераторных зажимов к негенераторным. Могут иметь место две схемы включения ваттметра (см. рис. 2 и рис. 3).

Рис. 2. Правильная схема включения ваттметра

Рис. 3. Правильная схема включения ваттметра

В схеме, данной на рис. 2, ток последовательной обмотки ваттметра равен току приемников энергии, мощность которых измеряется, а параллельная цепь ваттметра находится под напряжением U" большим, чем напряжение приемников, на величину падения напряжения в последовательной катушке. Следовательно, Рв = IU" = I(U+U1) = IU = IU1 , т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности последовательной обмотки ваттметра.

В схеме, данной на рис. 3, напряжение на параллельной цепи ваттметра равно напряжению на приемниках, а ток в последовательной обмотке больше тока, потребляемого приемником, на величину тока параллельной цепи ваттметра. Следовательно, P в = U(I+Iu) = UI+ UIu , т. е. мощность, измеряемая ваттметром, равна мощности приемников энергии, подлежащей измерению, и мощности параллельной цепи ваттметра.

При измерениях, в которых мощностью обмоток ваттметра можно пренебречь, предпочтительнее пользоваться схемой, показанной на рис. 2, так как обычно мощность последовательной обмотки меньше, чем параллельной, а следовательно, показания ваттметра будут более точными.

При точных измерениях необходимо вводить поправки в показания ваттметра, обусловленные мощностью его обмотки, и в таких случаях можно рекомендовать схему на рис.3, так как поправка легко вычисляется по формуле U 2 /Ru , где Ru обычно известно, а поправка остается неизменной при различных значениях тока, если U постоянно.

При включении ваттметра по схеме на рис. 2 потенциалы концов катушек разнятся только на величину падения напряжения в подвижной катушке, так как генераторные зажимы катушек соединены вместе. Падение напряжения в подвижной катушке незначительно по сравнению с напряжением на параллельной цепи, так как сопротивление этой катушки незначительно по сравнению с сопротивлением параллельной цепи.

Рис. 4. Неправильная схема включения ваттметра

На рис. 4 дана неправильная схема включения параллельной цепи ваттметра. Здесь генераторные зажимы катушек соединены через добавочное сопротивление, вследствие чего разность потенциалов между концами катушек равна напряжению цепи (иногда весьма значительному 240 - 600 В), а так как неподвижная и подвижная катушки находятся в непосредственной близости одна от другой, то создаются условия, благоприятные для пробоя изоляции катушек. Кроме того, между катушками, имеющими весьма различные потенциалы, будет наблюдаться электростатическое взаимодействие, могущее вызвать дополнительную погрешность при измерении мощности в электрической цепи.

electro-labs.com

Каждый, наверное, когда-нибудь задумывался над вопросом, сколько потребляет тот или иной бытовой электроприбор. Например, сколько энергии потребляет телевизор в дежурном режиме? Как изменяется энергопотребление холодильника в различных режимах работы? Для этих целей вам потребуется ваттметр переменного тока, и в статье мы подробно рассмотрим конструкцию одного из вариантов прибора (Рисунок 1).

Рисунок 1.

Разрабатывать такие приборы для постоянного тока не имеет смысла ввиду того, что в этом случае все очень просто вычисляется с помощью известных законов и математических формул, при этом из измерительных приборов потребуется только амперметр. Для переменного тока все немного сложнее и раньше аналоговые ваттметры для переменного тока, хоть и обеспечивали высокую точность, были сложны в производстве, не говоря уже о цифровых ваттметрах и возможности сборки подобных приборов в домашних условиях. Современные технологии и элементная база позволяют проектировать многофункциональные устройства при минимальных затратах. Дешевые микроконтроллеры (МК) с богатой периферией и мощными вычислительными способностями заметно упрощают создание различных систем автоматизации и управления. Интегрированная прецизионная аналоговая периферия, а в некоторых МК и подсистема цифровой обработки сигналов, дают возможность разрабатывать многофункциональные измерительные приборы.

Цифровой ваттметр, конструкцию которого мы рассмотрим, предназначен для измерения потребляемой мощности устройств, подключенных к сети переменного напряжения 207 - 235 В / 50 Гц. Основным элементом ваттметра является 8-разрядный PIC микроконтроллер компании серии , который с помощью внешних АЦП выполняет измерение протекающег через нагрузку тока, напряжения на нагрузке, вычисляет действующее значение напряжения (эффективное значение) в сети, действующее значение тока и среднее значение потребляемой мощности. Все указанные параметры отображаются на двухстрочном символьном ЖК индикаторе.

Прибор не имеет отдельного источника питания. Используется встроенный сетевой блок питания, благодаря чему микроконтроллерная часть прибора полностью изолирована от аналоговых узлов, находящихся под напряжением сети.

Принципиальная схема

Схема и проект печатной платы разработаны в бесплатной среде проектирования SoloPCB tools. Принципиальная схема прибора изображена на Рисунке 2. Полный список примененных компонентов приведен в Таблице 2.

Для вычисления потребляемой мощности нам необходимо знать напряжение на нагрузке и потребляемый нагрузкой ток. Напряжение, которое должно быть измерено, является напряжением сети переменного тока, поэтому необходимо учитывать, что оно может быть в диапазоне 207 В - 253 В. С целью повышения точности измерений необходимо выполнять измерение напряжения сети, а не использовать в расчетах фиксированное среднее значение 230 В.

Линии сети электропитания подключаются к разъему J1 (AC IN, вход переменного напряжения). Аналоговый узел для измерения напряжения сети состоит из резистивного делителя (R1, R2 R3), прецизионного источника опорного напряжения (U3) и АЦП (U5). Резистивный делитель, включенный между фазой и нейтралью, предназначен для понижающего масштабирования напряжения с коэффициентом R1/(R1+R2+R3)=1/201 . Таким образом мы понижаем пиковое значение напряжения величиной ±320 В в уровня ±1.59 В. Затем с помощью источника опорного напряжения REF03 () мы задаем смещение этого напряжения вверх на величину 2.5 В, и в результате диапазон ±320 В будет соответствовать входному диапазону АЦП 0.91 В - 4.09 В.

После масштабирования и смещения напряжение на резисторе R2 считывается аналого-цифровым преобразователем (U5) MCP3202 (Microchip) и передается в 12-разрядном формате по интерфейсу SPI в микроконтроллер. Для изолирования микроконтроллера от аналоговых узлов используются высокоскоростные оптопары HCPL-0630 . Второй канал АЦП используется для измерения опорного напряжения 2.5 В - это значение будет использоваться в качестве поправочного коэффициента в расчетах.

Линии сети переменного тока, нейтраль и заземление от разъема J1 непосредственно подключаются к выходному разъему J2 (AC OUT), линия фазы проходит через датчик тока (U4) ACS712-20A компании . Это малошумящий аналоговый датчик тока на основе эффекта Холла с гальванической развязкой от измеряемой линии и возможностью измерения постоянного и переменного тока. Для повышения шумовых характеристик и точности измерений имеется вывод для подключения фильтрующего конденсатора. При нулевом токе выходное напряжение датчика составляет 2.5 В. При протекании тока через выводы IP+ и IP- выходное напряжение датчика меняется в соответствии с масштабным коэффициентом 100 мВ/А, следовательно, при протекающем токе +20 А выходное напряжение составит 4.5 В и 0.5 В при токе -20 А. Аналоговое значение датчика тока преобразуется в цифровую форму с помощью еще одной микросхемы АЦП MCP3202.

Датчик тока имеет диапазон измерений ±20 А, но, учитывая ограничения по току для разъемов и держателя предохранителя, узел измерения переменного тока защищен предохранителем 16 А, включенным в фазовую линию.

Для питания аналоговых узлов и микроконтроллерной части используется трансформаторный блок питания (Рисунок 3). Трансформатор имеет две идентичные вторичные обмотки, с которых снимается переменное напряжение 6 В. Далее напряжение выпрямляется и стабилизируется с помощью микросхемы (U1, U2) с типовой схемой включения. Светодиоды D2 и D3 предназначены для индикации напряжения питания.

В ваттметре используется 8-разрядный МК PIC18F252. Он выполняет считывание значений напряжения и тока, выполняет вычисление их среднеквадратичных значений и среднее значение потребляемой мощности. Непосредственно к МК подключен ЖК индикатор, на котором отображаются указанные значения. Может использоваться как 4-, так и 8-битный режим работы. Для работы с внешними АЦП используется интегрированный в МК модуль SPI интерфейса. Несмотря на то, что в схеме используется кварцевый резонатор 20 МГц, микроконтроллер тактируется частотой 5 МГц. Для программирования микроконтроллера предусмотрен разъем ICSP (J3) (Рисунок 4).

Таблица 1. Список использованных компонентов.

Обозначение
в схеме
Наименование,
номинал
Корпус,
примечание
U1, U2 78L05 SOT-89
U3 REF03 SO-8
U4 ACS712-20A SO-8
U5, U10 MCP3202-BI/SN SO-8
U6, U7, U8 HCPL-0630 SO-8
U9 PIC18F252-I/SO SO-28
BR1, BR2 Диодный мост 800 В / 1 А
TR1 Трансформатор
HR-E3013051
2 × 6 В, 1.5 VA
LCD1 TC1602D Двухстрочный
ЖК индикатор
C1, C18 470 мкФ 25 В 10 мм × 10 мм
C2, C17 100 мкФ 16 В 6.3 мм × 5.4 мм
C11, C12 22 пФ 50 В smd 0805, керамика
C9 1 нФ 50 В smd 0805, керамика
C2, C4, C5, C6, C7,
C8,C10, C13, C22, C14,
C15, C16, C17, C20
100 нФ 50 В smd 0805, керамика
C21 1 мкФ 25 В smd 1206, керамика
R16 0 Ом smd 0805, 1%
R2, R3 1 МОм
R5, R6, R17 1 кОм
R1, R14, R15, R18,
R19
10 кОм
R7, R8, R9, R13 2.5 кОм
R4, R10, R11, R12 330 Ом
D2, D3 Красный светодиод smd 0805
D1 Диод Шоттки 1 А / 40 В, корпус SMA
Y1 Кварцевый резонатор 20 МГц
F1 Держатель предохранителя Для поверхностного
монтажа
J1, J2 Винтовой клемник 1×3 шаг 5.2 мм
J3 Штыревой разъем 1×5 шаг 2.5 мм

Печатная плата

Проект печатной платы тоже выполнен в среде SoloPCB. Проектирование прибора в качестве портативного устройства было хорошей идеей, при этом контур печатной платы был спроектирован в Autocad и затем экспортирован в среду SoloPCB (Рисунок 5).

Печатные проводники силовых линий (фаза, нейтраль, заземление), соединяющие входной (AC IN) и выходной (AC OUT) разъемы, сделаны широкими, насколько это возможно, все блокировочные конденсаторы расположены как можно ближе к микросхемам. Шины аналоговой (AGND) и цифровой «земли» (DGND) выполнены отдельными. Все компоненты расположены на верхнем слое.

Примечание:

При проектировании схемы и печатной платы в среде SoloPCB некоторые элементы, которые отсутствовали в библиотеках, были созданы вручную. Библиотека этих элементов входит в состав архива с проектными файлами, который вы сможете скачать в секции загрузок.

Программа микроконтроллера

Как мы заметили выше, микроконтроллер считывает значения напряжения и тока каждую 1 мс и накапливает 40 измерений каждого параметра, что соответствует двум периодам для частоты 50 Гц. Затем выполняется вычисление действующих значений и потребляемой мощности. Период 1 мс генерируется с помощью встроенного таймера Timer A, работающего в 16-битном режиме с выработкой сигнала прерывания по переполнению.

После получения всех выборок выполняется вычисление действующих (среднеквадратичных) значений напряжения и тока по формуле:

Следует заметить, что полученные выборки содержат также фазовое соотношение между напряжением и током. Таким образом, активная мощность переменного тока, которая вычисляется по формуле (V×I×cosθ ), может быть получена вычислением средней мощности с использованием следующей формулы:

Все вычисленные значения отображаются на экране ЖК индикатора. Для работы с индикатором применяется библиотека lcd.h для компилятора CCS C.

На рисунках ниже изображены измерения с помощью цифрового ваттметра: Рисунок 6 - потребляемая мощность паяльной станции в режиме нагрева, Рисунок 7 - водонагревателя мощностью 2 кВт.

Загрузки

Листинг исходного кода программы микроконтроллера (компилятор CCS C) -

Проектные файлы SoloPCB (схема, печатная плата, библиотеки элементов) -